分享
 
 
 

Making sense of data了解数据:探索数据分析与数据挖掘实用指南

Making sense of data了解数据:探索数据分析与数据挖掘实用指南  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,进口原版书,计算机 Computers & Internet ,

作者: Glenn J. Myatt 著

出 版 社:

出版时间: 2006-11-1字数:版次: 1页数: 280印刷时间: 2006/11/01开本: 16开印次: 1纸张: 胶版纸I S B N : 9780470074718包装: 平装内容简介

A practical, step-by-step approach to making sense out of data

Making Sense of Data educates readers on the steps and issues that need to be considered in order to successfully complete a data analysis or data mining project. The author provides clear explanations that guide the reader to make timely and accurate decisions from data in almost every field of study. A step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. With a comprehensive collection of methods from both data analysis and data mining disciplines, this book successfully describes the issues that need to be considered, the steps that need to be taken, and appropriately treats technical topics to accomplish effective decision making from data.

Readers are given a solid foundation in the procedures associated with complex data analysis or data mining projects and are provided with concrete discussions of the most universal tasks and technical solutions related to the analysis of data, including:

* Problem definitions

* Data preparation

* Data visualization

* Data mining

* Statistics

* Grouping methods

* Predictive modeling

* Deployment issues and applications

Throughout the book, the author examines why these multiple approaches are needed and how these methods will solve different problems. Processes, along with methods, are carefully and meticulously outlined for use in any data analysis or data mining project.

From summarizing and interpreting data, to identifying non-trivial facts, patterns, and relationships in the data, to making predictions from the data, Making Sense of Data addresses the many issues that need to be considered as well as the steps that need to be taken to master data analysis and mining.

作者简介

GLENN J. MYATT, PhD, is cofounder of Leadscope, Inc., a data mining company providing solutions to the pharmaceutical and chemical industry. He has also acted as a part-time lecturer in chemoinformatics at The Ohio State University and has held a series of industrial and academic research positions. Dr. Myatt is the author of numerous journal articles.

目录

Preface

1 Introduction

1.1 Overview

1.2 Problem definition

1.3 Data preparation

1.4 Implementation of the analysis

1.5 Deployment of the results

1.6 Book outline

1.7 Summary

1.8 Further reading

2 Definition

2.1 Overview

2.2 Objectives

2.3 Deliverables

2.4 Roles and responsibilities

2.5 Project plan

2.6 Case study

2.6.1 Overview

2.6.2 Problem

2.6.3 Deliverables

2.6.4 Roles and responsibilities

2.6.5 Current situation

2.6.6 Timetable and budget

2.6.7 Cost/benefit analysis

2.7 Summary

2.8 Further reading

3 Preparation

3.1 Overview

3.2 Data sources

3.3 Data understanding

3.3.1 Data tables

3.3.2 Continuous and discrete variables

3.3.3 Scales of measurement

3.3.4 Roles in analysis

3.3.5 Frequency distribution

3.4 Data preparation

3.4.1 Overview

3.4.2 Cleaning the data

3.4.3 Removing variables

3.4.4 Data transformations

3.4.5 Segmentation

3.5 Summary

3.6 Exercises

3.7 Further reading

4 Tables and graphs

4.1 Introduction

4.2 Tables

4.2.1 Data tables

4.2.2 Contingency tables

4.2.3 Summary tables

4.3 Graphs

4.3.1 Overview

4.3.2 Frequency polygrams and histograms

4.3.3 Scatterplots

4.3.4 Box plots

4.3.5 Multiple graphs

4.4 Summary

4.5 Exercises

4.6 Further reading

5 Statistics

5.1 Overview

5.2 Descriptive statistics

5.2.1 Overview

5.2.2 Central tendency

5.2.3 Variation

5.2.4 Shape

5.2.5 Example

5.3 Inferential statistics

5.3.1 Overview

5.3.2 Confidence intervals

5.3.3 Hypothesis tests

5.3.4 Chi-square

5.3.5 One-way analysis of variance

5.4 Comparative statistics

5.4.1 Overview

5.4.2 Visualizing relationships

5.4.3 Correlation coefficient (r)

5.4.4 Correlation analysis for more than two variables

5.5 Summary

5.6 Exercises

5.7 Further reading

6 Grouping

6.1 Introduction

6.1.1 Overview

6.1.2 Grouping by values or ranges

6.1.3 Similarity measures

6.1.4 Grouping approaches

6.2 Clustering

6.2.1 Overview

6.2.2 Hierarchical agglomerative clustering

6.2.3 K-means clustering

6.3 Associative rules

6.3.1 Overview

6.3.2 Grouping by value combinations

6.3.3 Extracting rules from groups

6.3.4 Example

6.4 Decision trees

6.4.1 Overview

6.4.2 Tree generation

6.4.3 Splitting criteria

6.4.4 Example

6.5 Summary

6.6 Exercises

6.7 Further reading

7 Prediction

7.1 Introduction

7.1.1 Overview

7.1.2 Classification

7.1.3 Regression

7.1.4 Building a prediction model

7.1.5 Applying a prediction model

7.2 Simple regression models

7.2.1 Overview

7.2.2 Simple linear regression

7.2.3 Simple nonlinear regression

7.3 K-nearest neighbors

7.3.1 Overview

7.3.2 Learning

7.3.3 Prediction

7.4 Classification and regression trees

7.4.1 Overview

7.4.2 Predicting using decision trees

7.4.3 Example

7.5 Neural networks

7.5.1 Overview

7.5.2 Neural network layers

7.5.3 Node calculations

7.5.4 Neural network predictions

7.5.5 Learning process

7.5.6 Backpropagation

7.5.7 Using neural networks

7.5.8 Example

7.6 Other methods

7.7 Summary

7.8 Exercises

7.9 Further reading

8 Deployment

8.1 Overview

8.2 Deliverables

8.3 Activities

8.4 Deployment scenarios

8.5 Summary

8.6 Further reading

9 Conclusions

9.1 Summary of process

9.2 Example

9.2.1 Problem overview

9.2.2 Problem definition

9.2.3 Data preparation

9.2.4 Implementation of the analysis

9.2.5 Deployment of the results

9.3 Advanced data mining

9.3.1 Overview

9.3.2 Text data mining

9.3.3 Time series data mining

9.3.4 Sequence data mining

9.4 Further reading

Appendix A Statistical tables

A.1 Normal distribution

A.2 Student’s t-distribution

A.3 Chi-square distribution

A.4 F-distribution

Appendix B Answers to exercises

Glossary

Bibliography

Index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有