分享
 
 
 

A Practical Guide to Forecasting Financial Market Volatility金融市场挥发性预测实用指南

A Practical Guide to Forecasting Financial Market Volatility金融市场挥发性预测实用指南  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,进口原版书,经管与理财 Business & Investing ,

作者: Ser-Huang Poon著

出 版 社:

出版时间: 2005-6-1字数:版次: 1页数: 219印刷时间: 2005/06/01开本: 16开印次: 1纸张: 胶版纸I S B N : 9780470856130包装: 精装内容简介

Financial market volatility forecasting is one of today's most important areas of expertise for professionals and academics in investment, option pricing, and financial market regulation. While many books address financial market modelling, no single book is devoted primarily to the exploration of volatility forecasting and the practical use of forecasting models. A Practical Guide to Forecasting Financial Market Volatility provides practical guidance on this vital topic through an in-depth examination of a range of popular forecasting models. Details are provided on proven techniques for building volatility models, with guide-lines for actually using them in forecasting applications.

作者简介

Dr SER-HUANG POON was promoted to Professor of Finance at Manchester University in 2003. Prior to that, she was a senior lecturer at Strathclyde University. Ser-Huang graduated from the National University of Singapore and obtained her masters and PhD from Lancaster University, UK. She has researched financial market volatility for many years and has published in many top ranking peer reviewed finance and financial econometric journals with many co-authors from around the world. Her financial market volatility work was cited as a reference reading on the Nobel web site in 2003.

目录

Foreword by Clive Granger.

Preface.

1 Volatility Definition and Estimation.

1.1 What is volatility?

1.2 Financial market stylized facts.

1.3 Volatility estimation.

1.3.1 Using squared return as a proxy for daily volatility.

1.3.2 Using the high–low measure to proxy volatility.

1.3.3 Realized volatility, quadratic variation and jumps.

1.3.4 Scaling and actual volatility.

1.4 The treatment of large numbers.

2 Volatility Forecast Evaluation.

2.1 The form of Xt.

2.2 Error statistics and the form of εt.

2.3 Comparing forecast errors of different models.

2.3.1 Diebold and Mariano’s asymptotic test.

2.3.2 Diebold and Mariano’s sign test.

2.3.3 Diebold and Mariano’sWilcoxon sign-rank test.

2.3.4 Serially correlated loss differentials.

2.4 Regression-based forecast efficiency and orthogonality test.

2.5 Other issues in forecast evaluation.

3 Historical Volatility Models.

3.1 Modelling issues.

3.2 Types of historical volatility models.

3.2.1 Single-state historical volatility models.

3.2.2 Regime switching and transition exponential smoothing.

3.3 Forecasting performance.

4 Arch.

4.1 Engle (1982).

4.2 Generalized ARCH.

4.3 Integrated GARCH.

4.4 Exponential GARCH.

4.5 Other forms of nonlinearity.

4.6 Forecasting performance.

5 Linear and Nonlinear Long Memory Models.

5.1 What is long memory in volatility?

5.2 Evidence and impact of volatility long memory.

5.3 Fractionally integrated model.

5.3.1 FIGARCH.

5.3.2 FIEGARCH.

5.3.3 The positive drift in fractional integrated series.

5.3.4 Forecasting performance.

5.4 Competing models for volatility long memory.

5.4.1 Breaks.

5.4.2 Components model.

5.4.3 Regime-switching model.

5.4.4 Forecasting performance.

6 Stochastic Volatility.

6.1 The volatility innovation.

6.2 The MCMC approach.

6.2.1 The volatility vector H.

6.2.2 The parameter w.

6.3 Forecasting performance.

7 Multivariate Volatility Models.

7.1 Asymmetric dynamic covariance model.

7.2 A bivariate example.

7.3 Applications.

8 Black–Scholes.

8.1 The Black–Scholes formula.

8.1.1 The Black–Scholes assumptions.

8.1.2 Black–Scholes implied volatility.

8.1.3 Black–Scholes implied volatility smile.

8.1.4 Explanations for the ‘smile’.

8.2 Black–Scholes and no-arbitrage pricing.

8.2.1 The stock price dynamics.

8.2.2 The Black–Scholes partial differential equation.

8.2.3 Solving the partial differential equation.

8.3 Binomial method.

8.3.1 Matching volatility with u and d.

8.3.2 A two-step binomial tree and American-style options.

8.4 Testing option pricing model in practice.

8.5 Dividend and early exercise premium.

8.5.1 Known and finite dividends.

8.5.2 Dividend yield method.

8.5.3 Barone-Adesi and Whaley quadratic approximation.

8.6 Measurement errors and bias.

8.6.1 Investor risk preference.

8.7 Appendix: Implementing Barone-Adesi and Whaley’s efficient algorithm.

9 Option Pricing with Stochastic Volatility.

9.1 The Heston stochastic volatility option pricing model.

9.2 Heston price and Black–Scholes implied.

9.3 Model assessment.

9.3.1 Zero correlation.

9.3.2 Nonzero correlation.

9.4 Volatility forecast using the Heston model.

9.5 Appendix: The market price of volatility risk.

9.5.1 Ito’s lemma for two stochastic variables.

9.5.2 The case of stochastic volatility.

9.5.3 Constructing the risk-free strategy.

9.5.4 Correlated processes.

9.5.5 The market price of risk.

10 Option Forecasting Power.

10.1 Using option implied standard deviation to forecast volatility.

10.2 At-the-money or weighted implied?

10.3 Implied biasedness.

10.4 Volatility risk premium.

11 Volatility Forecasting Records.

11.1 Which volatility forecasting model?

11.2 Getting the right conditional variance and forecast with the ‘wrong’ models.

11.3 Predictability across different assets.

11.3.1 Individual stocks.

11.3.2 Stock market index.

11.3.3 Exchange rate.

11.3.4 Other assets.

12 Volatility Models in Risk Management.

12.1 Basel Committee and Basel Accords I & II.

12.2 VaR and backtest.

12.2.1 VaR.

12.2.2 Backtest.

12.2.3 The three-zone approach to backtest evaluation.

12.3 Extreme value theory and VaR estimation.

12.3.1 The model.

12.3.2 10-day VaR.

12.3.3 Multivariate analysis.

12.4 Evaluation of VaR models.

13 VIX and Recent Changes in VIX.

13.1 New definition for VIX.

13.2 What is the VXO?

13.3 Reason for the change.

14 Where Next?

Appendix.

References.

Index.

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有