分享
 
 
 

文科高等数学(十一五)

文科高等数学(十一五)  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,自然科学,数学,高等数学,

作者: 谭国律主编

出 版 社: 北京航空航天大学出版社

出版时间: 2009-1-1字数: 352000版次: 1页数: 206印刷时间: 2009/01/01开本: 16开印次: 1纸张: 胶版纸I S B N : 9787811245479包装: 平装编辑推荐

本书是关于介绍“文科高等数学”的教学用书,内容分为六章,包括一元函数的微分学和积分学、无穷级数、线性代数、解析几何及概率统计基础等。本书可作为普通高等院校本科及高职高专院校的通识课程“大学数学”的教材,对从事人文科学者学习数学、了解数学也有一定的参考价值。

内容简介

本书是普通高等院校文科类高等数学教材,内容分为六章,包括一元函数的微分学和积分学、无穷级数、线性代数、解析几何及概率统计基础等。书中根据文科的特点,精选数学素材,着眼于大学文科学生的数学文化素质教育和基本数学工具的掌握,并且每节后均附有习题。

本书可作为普通高等院校本科及高职高专院校的通识课程“大学数学”的教材,对从事人文科学者学习数学、了解数学也有一定的参考价值。

目录

第1章 一元函数的微分学

1.1 数列与极限

1.1.1 数列的极限

1.1.2 数列极限的性质与运算

习题1.1

1.2 函数的基本概念

1.2.1 函数概念

1.2.2 函数的表示法

1.2.3 函数的几种特性

1.2.4 函数的运算

1.2.5 初等函数

习题1.2

1.3 函数的极限

1.3.1 函数极限的定义

1.3.2 函数极限的运算

1.3.3 两个重要的函数极限

习题1.3

1.4 连续函数

1.4.1 连续函数的概念

1.4.2 闭区间上连续函数的性质

习题1.4

1.5 函数的变化率——导数

1.5.1 导数概念

1.5.2 导数的定义

1.5.3 基本初等函数的导数及求导举例

1.5.4 求导法则

1.5.5 高阶导数

习题1.5

1.6 函数的微分

1.6.1 微分的定义

1.6.2 微分公式与微分法则

1.6.3 微分在近似计算中的应用

习题1.6

1.7 微分中值定理及导数的应用

1.7.1 中值定理

1.7.2 洛必达法则

1.7.3 函数的增减性

1.7.4 函数的极值

1.7.5 函数的凹凸与拐点

习题1.7

第2章 一元函数的积分学

2.1 不定积分

2.1.1 原函数与不定积分的概念

2.1.2 不定积分的性质及基本积分公式

2.1.3 积分法

习题2.1

2.2 定积分

2.2.1 引例

2.2.2 定积分的定义

2.2.3 定积分的性质

2.2.4 定积分的计算

2.2.5 定积分的换元法与分部积分法

习题2.2

2.3 广义积分

2.3.1 无穷限积分

2.3.2 瑕积分

习题2.3

第3章 无穷级数

3.1 常数项级数

3.1.1 数项级数收敛的定义

3.1.2 收敛级数的性质

3.1.3 数项级数的一些敛散性判别法

习题3.1

3.2 幂级数

3.2.1 函数项级数的基本概念

3.2.2 幂级数

3.2.3 幂级数的性质与函数的幂级数展开

习题3.2

第4章 线性代数

4.1 线性方程组的消元法

4.1.1 消元法举例

4.1.2 消元法的初等变换实现

4.1.3 高斯(Gauss)消元法

习题4.1

4.2 行列式

4.2.1 二阶、三阶行列式

4.2.2 排列及其逆序数

4.2.3 n阶行列式

4.2.4 行列式的性质

4.2.5 行列式的展开

4.2.6 克莱姆规则

习题4.2

4.3 矩阵

4.3.1 矩阵概念

4.3.2 矩阵运算

4.3.3 矩阵的初等变换和初等矩阵

4.3.4 可逆矩阵

4.3.5 逆矩阵的求法

4.3.6 矩阵的秩

4.3.7 分块矩阵

习题4.3

4.4 向量空间

4.4.1 向量的概念

4.4.2 维向量空问

4.4.3 线性相关性

4.4.4 向量组的秩

4.4.5 矩阵秩的几何意义

4.4.6 向量空间的基和维数

习题4.4

4.5 线性方程组的解结构

4.5.1 线性方程组的矩阵表示

4.5.2 线性方程组有解的判定

4.5.3 齐次线性方程组的解结构

4.5.4 非齐次线性方程组的解结构

习题4.5

4.6 矩阵的特征值与特征向量

4.6.1 特征值与特征向量的概念

4.6.2 特征值与特征向量的求法

4.6.3 特征值与特征向量的性质

习题4.6

4.7 矩阵的相似

4.7.1 矩阵相似的概念和性质

4.7.2 矩阵的相似对角化问题

4.7.3 实对称矩阵的对角化

习题4.7

第5章 解析几何初步

5.1 直角坐标系

5.1.1 平面直角坐标系

5.1.2 空间直角坐标系

习题5.1

5.2 向量代数

5.2.1 向量的概念

5.2.2 向量的坐标

5.2.3 向量的数量积

5.2.4 向量的向量积

5.2.5 向量的混合积

习题5.2

5.3 曲面

5.3.1 曲面方程的概念

5.3.2 平面

5.3.3 旋转曲面

5.3.4 柱面

5.3.5 常见的二次曲面

习题5.3

5.4 空间曲线

5.4.1 空间曲线的一般方程

5.4.2 空间直线

5.4.3 空间直线的位置关系

5.4.4 空间平面与空间直线的位置关系

5.4.5 平面与空间区域

习题5.4

5.5 几何学的一些历史

5.5.1 欧几里得几何

5.5.2 非欧几何

5.5.3 射影几何

5.5.4 几何学的解析方法

第6章 概率统计基础

6.1 随机事件与概率

6.1.1 随机事件

6.1.2 事件的概率

6.1.3 事件的关系及运算

6.1.4 条件概率

6.1.5 事件的独立性和独立试验

6.1.6 事件概率的直接计算

6.1.7 事件概率的基本性质

习题6.1

6.2 随机变量及其分布

6.2.1 离散型随机变量及其分布

6.2.2 连续型随机变量及其分布

习题6.2

6.3 随机变量的数字特征

6.3.1 数学期望

6.3.2 方差

6.3.3 常见分布的数学期望与方差

6.3.4 切比雪夫不等式

习题6.3

6.4数理统计初步

6.4.1 假设检验问题

6.4.2 参数估计问题

习题6.4

附录A

A.1 集合的基数

A.2 数学悖论

A.3 直线与曲面的和谐

A.4 有趣的曲线

A.5 关于1+1的说法

A.6 代数方程的根式解问题

参考文献

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有