2010年考研数学复习全书(1)(理工类)
分類: 图书,自然科学,数学,数学理论,
作者: 李正元 等主编
出 版 社: 国家行政学院出版社
出版时间: 2009-2-1字数:版次: 1页数: 607印刷时间:开本: 16开印次:纸张:I S B N : 9787801400536包装: 平装编辑推荐
赠送《全书习题全解》特殊仿伪,盗版书将丢失重要信息。
内容简介
本书2010年版是在2009年版的基础上进行修订的,更加完善,更具有针对性和适用性。
高等数学部分:按考试大纲的要求及绝大多数考生系统复习的需要,本书进行了调整,宗旨是重点内容重点讲解,如:求极限的方法,求积分(一元、多元函数)的方法,牛顿-莱布尼兹公式及其应用,二重积分的计算与应用,泰勒公式及其应用,求幂级数的收敛域或收敛区间,幂级数的求和,求函数的幂级数展开式等单独分离出来进行举例讲解,同时调换并增加了若干典型例题,并修改了部分例题的解法,使之更简捷,更易掌握。
线性代数部分:主要是针对一些重点概念和公式的运用,调换并增加了若干例题进行讲解,使考生对这些重点概念和公式能彻底理解、吃透,对一些常考题型,如:抽象行列式的计算,有关伴随矩阵的命题,n阶矩阵的特征值和特征向量以及线性相关与无关的证明、基础解系的证明等题型的解题方法和技巧进一步作了较详尽的归纳总结,并给典型例题进行讲解,消除考生对这些重要概念和公式的运用和常考题型解题方法的疑惑,以便考生在考试中应对自如,提高应试水平。
概率统计部分:与高等数学部分一样也进行了调整,调整后更适合考生进行系统复习,同时对重点概念、公式和常考题型从多角度命制典型例题进行讲解,以提高考生运用概念、公式综合分析能力,从而取得好成绩。
目录
第一篇 高等数学
第一章 极限、连续与极限的方法
内容概要与重难点提示
考核知识要点讲解
一、极限的概念与性质
二、极限存在性的判别(极限存在的两个准则)
三、求极限的方法
四、无穷小及其阶
五、函数的连续性及其判断
常考题型及其解题方法与技巧
题型训练
第二章 一元函数的导数与微分概念及其计算
内容概要与重难点提示
考核知识要点讲解
一、一元函数的导数与微分
二、按定义求导及其适用的情形
三、基本初等函数导数表,导数四则运算法则与复合函数微分法则
四、复合函数求导法的应用——由复合函数求导法则导出的微分法则
五、分段函数求导法
六、高阶导数及n阶导数的求法
七、一元函数微分学的简单应用
常考题型及其解题方法与技巧
题型训练
第三章 一元函数积分概念、计算及应用
内容概要与重难点提示
考核知识要点讲解
一、一元函数积分的概念、性质与基本定理
二、积分法则
三、各类函数的积分法
四、反常积分(广义积分)
五、积分学应用的基本方法——微元分析法
六、一元函数积分学的几何应用
七、一元函数积分学的物理应用
常考题型及其解题方法与技巧
题型训练
第四章 微分中值定理及其应用
内容概要与重难点提示
考核知识要点讲解
一、微分中值定理及其作用
二、利用导数研究函数的变化
兰、一元函数的最大值与最小值问题
常考题型及其解题方法与技巧
题型训练
第五章 一元函数的勒公式及其应用
内容概要与重难点提示
考核知识要点讲解
一、带皮亚诺余项与拉格朗日余项的n阶泰勒公式
二、带皮亚诺余项的泰勒公式的求法
三、一元函数泰勒公式的若干应用
常考题型及其解题方法与技巧
题型训练
第六章 微分方程
内容概要与重难点提示
考核知识要点讲解
一、基本概念
二、一阶微分方程
三、可降阶的高阶方程
四、线性微分方程解的性质与结构
五、二阶和某些高阶常系数齐次线性方程、欧拉方程
六、二阶常系数非齐次线性方程
七、含变限积分的方程
常考题型及其解题方法与技巧
题型训练
第七章 向量代数和空间解析几何
内容概要与重难点提示
考核知识要点讲解
一、空间直角坐标系
二、向量的概念
三、向量的运算
四、平面方程、直线方程
五、平面、直线之间相互关系与距离公式
六、旋转面与柱面方程,常用二次曲面的方程及其图形
七、空间曲线在坐标平面上的投影
常考题型及其解题方法与技巧
题型训练
第八章 多元函数微分学
内容概要与重难点提示
考核知识要点讲解
一、多元函数的概念、极限与连续性
二、多元函数的偏导数与全微分
三、多元函数微分法则
四、复合函数求导法的应用——隐函数微分法
五、复合函数求导法则的其他应用
六、多元函数极值充分判别法
七、多元函数的最大值与最小值问题
八、方向导数与梯度
九、多元函数微分学的几何应用
常考题型及其解题方法与技巧
题型训练
第九章 多元函数积分的概念、计算及其应用
内容概要与重难点提示
考核知识要点讲解
一、多元函数积分的概念与性质
二、在直角坐标系中化多元函数的积分为定积分
三、重积分的变量替换
四、如何应用多元函数积分的计算公式及简化计算
五、多元函数积分学的几何应用
六、多元函数积分学的物理应用
常考题型及其解题方法与技巧
题型训练
第十章 多元函数微分学中的基本公式及其应用
内容概要与重难点提示
考核知识要点讲解
一、多元函数积分学中的基本公式——格林公式,高斯公式与斯托克斯公式
二、向量场的通量与散度,环流量与旋度
三、格林公式,高斯公式与斯托克斯公式的一个应用——简化多元函数积分的计算
四、平面上曲线积分与路径无关问题及微分式的原函数问题
常考题型及其解题方法与技巧
题型训练
第十一章 无穷级数
第二篇 线性代数
第一章 行列式
第二章 矩阵及其运算
第三章 n维向量与向量空间
第四章 线性方程组
第三篇 概率论与数理统计
第一章 随机事件和概率
第二章 随机变量及其分布
第三章 多维随机变量及其分布
第四章 随机变量的数字特征
第五章 大数定律和中心极限定理
第六章 数理统计的基本概念
第七章 参数估计和假设检验
书摘插图
第一篇 高等数学
第一章 极限、连续与求极限的方法内容概要与重难点提示
1.微积分中研究的对象是函数。函数概念的实质是变量之间确定的对应关系,变量之间是否有函数关系,就看是否存在一种对应规则,使得其中一个量或几个量定了,另一个量也就被唯一确定,前者是一元函数,后者是多元函数。
函数这部分的重点是:复合函数、反函数和分段函数及函数记号的运算。(这部分内容贯穿全书,不另行复习。)
2.极限是微积分的理论基础,研究函数的性质实质上是研究各种类型的极限,如连续、导数、定积分、级数等等,由此可见极限的重要性,本章的重点内容是极限,既要准确理解极限的概念、性质和极限存在的条件,又要能准确地求出各种极限,求极限的方法很多,综合起来主要有:
①利用极限的四则运算与幂指数运算法则;
②利用函数的连续性;
③利用变量替换与两个重要极限;
④利用等价无穷小因子替换;
⑤利用洛必达法则;
⑥分别求左、右极限;
⑦数列极限转化为函数极限;
⑧利用适当放大缩小法;
⑨对递归数列先证明极限存在(常用到“单调有界数列有极限”的准则),再利用递归关系求出极限;
⑩利用定积分求n项和式的极限;
⑾利用泰勒公式;
⑿利用导数的定义求极限;
3.无穷小就是极限为零的变量,极限问题可归结为无穷小问题,极限方法的重要部分是无穷小分析,或说无穷小阶的估计与分析,要理解无穷小及其阶的概念,学会比较无穷小的阶及确定无穷小阶的方法,会用等价无穷小因子替换求极限。
4.我们研究的对象是连续函数或除若干点外是连续的函数,由于函数的连续性是通过极限定义的,所以判断函数是否连续及函数间断点的类型等问题本质上仍是求极限.因此这部分也是本章的重点,要掌握判断函数连续性及间断点类型的方法,特别是分段函数在连接点处的连续性。
函数的其他许多性质都与连续性有关,因此我们要了解连续函数的重要性质——有界闭区间上连续函数的有界性定理,最大值、最小值定理和中间值(介值)定理,并会应用这些性质。
……