高级微观经济理论(第2版)(英文版)(新世纪高校经济学英文版教材)(Advanced Microeconmic Theory)

分類: 图书,英语与其他外语,英语读物,英文版,文化教育,
品牌: 杰里
基本信息·出版社:上海财经大学出版社
·页码:543 页
·出版日期:2008年
·ISBN:9787810496827
·条形码:9787810496827
·包装版本:2版
·装帧:平装
·开本:16
·正文语种:英语
·丛书名:新世纪高校经济学英文版教材
·外文书名:Advanced Microeconmic Theory
产品信息有问题吗?请帮我们更新产品信息。
内容简介《高级微观经济理论(第2版)(英文版)》用耳目一新和通俗易读的写作方法严密地阐述了包括消费者理论、生产者理论,以及部分均衡、一般均衡、博弈论和信息等内容的现代微观经济理论。《高级微观经济理论(第2版)(英文版)》所详细介绍的内容不仅具有一定的深度,而且还能帮助读者通过深入了解如何运用微观经济原理来掌握这些复杂的理论。具有三大特色:
新增了“拍卖”这一章节。《高级微观经济理论(第2版)(英文版)》从机制设计的视角出发,向读者介绍了最新的“拍卖”理论。该理论反映了目前最富有活力的理论研究前沿的动向。通过本章的学习,读者能够加深自己对该迅速发展的领域的理解。
新增了数学附录。
编辑推荐《高级微观经济理论(第2版)(英文版)》通过新添系统的数学附录,希望那些想了解、复习和获取数学基础知识的读者能在完全重新组织改写的这两章中获得其所需的内容。
内容完全更新。《高级微观经济理论(第2版)(英文版)》仔细修订和完全更新了第一版的每一章节的内容。
目录
前言
Ⅰ 经济代理人
1 消费者理论
1.1 主要概念
1.2 偏好与效用
1.2.1 偏好关系
1.2.2 效用函数
1.3 消费者问题
1.4 间接效用与支出
1.4.1 间接效用函数
1.4.2 支出函数
1.4.3 间接效用函数与支出函数之间的关系
1.5 消费者需求的性质
1.5.1 相对价格与实际收入
1.5.2 收入效应与替代效应
1.5.3 一些弹性关系
1.6 习题
2 消费者理论专题
2.1 对偶性:一个细致的考虑
2.1.1 支出与消费者偏好
2.1.2 凸性与单调性
2.1.3 间接效用与消费者偏好
2.2 可积分性
2.3 显示性偏好
2.4 不确定性
2.4.1 偏好
2.4.2 冯·诺伊曼-莫根施特效用
2.4.3 风险厌恶
2.5 习题
3 厂商理论
3.1 主要概念
3.2 生产
3.2.1 规模报酬与可变比例
3.3 成本
3.4 生产中的对偶性
3.5 竞争性厂商
3.5.1 利润最大化
3.5.2 利润函数
3.6 习题
Ⅱ 市场与福利
4 局部均衡
4.1 完全竞争
4.2 不完全竞争
4.2.1 古诺寡头
4.2.2 伯川德寡头
4.2.3 垄断竞争
4.3 均衡与福利
4.3.1 价格与个人福利
4.3.2 竞争结果的效率
4.3.3 效率与总剩余最大化
4.4 习题
5 一般均衡
5.1 交换均衡
5.2 竞争性市场体系均衡
5.2.1 均衡的存在性
5.2.2 效率
5.3 生产均衡
5.3.1 生产者
5.3.2 消费者
5.3.3 均衡
5.3.4 福利
5.4 核与均衡性
5.4.1 复制的经济
5.5 习题
6 社会选择与福利
6.1 问题的性质
6.2 社会选择与阿罗定理
6.2.1 一种图式的证明
6.3 可度量性、可比较性与一些可能性
6.3.1 罗尔斯形式
6.3.2 功利形式
6.3.3 可变的形式
6.4 公正性
6.5 习题
Ⅲ 策略性行为
7 博奕论
8 信息经济学
9 拍卖与机制设计
数学附录
第A1章 集合与映射
第A2章 微积分与最优化
……[看更多目录]
序言In every chapter of this new edition, our focus remains on the modem coreof its respective area. We continue to believe that this approach enablesthe careful reader to build a deep understanding of the principal pillars ofmodem microeconomics and to see the connections among them. We aregrateful that so many students and colleagues seem to agree.
There are exercises at the end of every chapter, and working throughas many of these as possible is the surest way to master the material. Hintsand answers for selected exercises are provided at the end of the book,along with lists of theorems and definitions appearing in the text. We alsoplan to maintain a Readers' Forum on the web, where readers can exchangesolutions to exercises in the text. The Readers' Forum can be reached athttp ://alfred. vassar.edu.
In preparing this new edition, we have taken the opportunity to makeone major structural change. As more and more students enter graduateprograms better prepared in mathematics, we believed we could safelymove the pure mathematics to an appendix. There, it will still be availablefor those who want a refresher or for those who need to fill a gap in theirpreparation, but it will not stand in the way of instructors who feel theirstudents are prepared to jump right into microeconomic theory from dayone. The two full chapters of the Mathematical Appendix still providestudents with a lengthy and largely self-contained development of the settheory, real analysis, topology, calculus, and modem optimization theory,which are indispensable in modem microeconomics. The exposition isformal but presumes nothing more than a good grounding in single-variablecalculus and simple linear algebra as a starting point. We suggest that evenstudents who are very well-prepared in mathematics browse both chaptersof the appendix early on. That way, if and when some review or referenceis needed, the reader will have a sense of how that material is organized.
文摘插图:

Theorem 1.1 is very important. It frees us to represent preferences either in terms ofthe primitive set-theoretic preference relation or in terms of a numerical representation, acontinuous utility function. But this utility representation is never unique. If some func-tion u represents a consumer's preferences, then so too will the function v = u + 5, or thefunction v = u3, because each of these functions ranks bundles the same way u does. Thisis an important point about utility functions that must be grasped. If all we require of thepreference relation is that it order the bundles in the consumption set, and if all we requireof a utility function representing those preferences is that it reflect that ordering of bundlesby the ordering of numbers it assigns to them, then any other function that assigns numbersto bundles in the same order as u does will also represent that preference relation and willitself be just as good a utility function as u.
This is known by several different names in the literature. People sometimes saythe utility function is invariant to positive monotonic transforms or sometimes they saythat the utility function is unique up to a positive monotonic transform. Either way, themeaning is this: If all we require of the preference relation is that rankings between bun-dles be meaningful, then all any utility function representing that relation is capable ofconveying to us is ordinal information: no more and no less. If we know that one func-tion properly conveys the ordering of bundles, then any transform of that function thatpreserves that ordering of bundles will perform all the duties of a utility function justas well.
Seeing the representation issue in proper perspective thus frees us and restrains us.If we have a function u that represents some consumer's preferences, it frees us to trans-form u into other, perhaps more convenient or easily manipulated forms, as long as th
……[看更多书摘]