分享
 
 
 

高速电路信号完整性分析与设计(电子信息与电气学科规划教材·电子信息科学与工程类专业)

高速电路信号完整性分析与设计(电子信息与电气学科规划教材·电子信息科学与工程类专业)  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,教材教辅与参考书,大学,工科,
  品牌: 陈伟

基本信息·出版社:电子工业出版社

·页码:321 页

·出版日期:2009年

·ISBN:7121086980

·条形码:9787121086984

·包装版本:1版

·装帧:平装

·开本:16

·正文语种:中文

·丛书名:电子信息与电气学科规划教材·电子信息科学与工程类专业

产品信息有问题吗?请帮我们更新产品信息。

内容简介《高速电路信号完整性分析与设计》较系统、全面、深入地介绍了高速电路信号完整性分析与设计的基本理论、概念、技术和应用。全书共分12章,内容包括:高速信号与高速电路的基本概念、高速信号完整性基本理论、高速逻辑电路分析、高速信号的反射分析、串扰分析、开关噪声分析、时序分析、EMC分析、电源完整性分析、信号完整性仿真模型分析、高速电路差分线设计以及高速电路仿真设计实例等。《高速电路信号完整性分析与设计》配有免费电子教学课件。

编辑推荐《高速电路信号完整性分析与设计》特点:讲解了高速数字电路信号完整性分析的基本原理;重点阐述了高速信号完整性问题产生的机理、现象与解决方案;讨论了用于高速电路设计、实现与分析的信号完整性仿真分析模型的方法;提供了大量的典型高速电路仿真设计实例,便于读者对高速电路进行仿真设计与实践。

目录

第1章 绪论(1)

1.1 高速数字电路与信号完整性的定义(2)

1.1.1 高速数字电路的定义(2)

1.1.2 信号完整性的定义(4)

1.2 高速数字电路设计研究的内容(5)

1.2.1 高速逻辑电路(5)

1.2.2 信号完整性(6)

1.2.3 电磁兼容(7)

1.2.4 电源完整性(8)

1.2.5 高速仿真模型(8)

1.3 高速数字电路的设计流程(9)

1.3.1 传统的数字电路设计流程(9)

1.3.2 基于信号完整性分析的高速数字电路设计方法(10)

1.4 高速数字电路仿真设计软件(11)

1.4.1 Apsim仿真软件包(11)

1.4.2 Mentor Graphics公司的Hyperlynx仿真软件(12)

1.4.3 Mentor Graphics公司的ICX3.0仿真软件(12)

1.4.4 CADENCE公司的SPECCTRAQuest仿真工具(13)

1.4.5 Ansoft公司的Swave仿真工具(13)

1.4.6 Zuken公司的Hot-Stage4工具(13)

1.5 高速数字电路的发展趋势(14)

第2章 高速信号完整性的基本理论(15)

2.1 基本电磁理论(15)

2.1.1 麦克斯韦方程组(15)

2.1.2 传输线理论(16)

2.1.3 匹配理论(20)

2.2 高速电路基础知识(24)

2.2.1 时间与频率、时域与频域(24)

2.2.2 时间和距离(26)

2.2.3 集总系统与分布系统(27)

2.2.4 带宽与上升时间(27)

2.2.5 四种电抗(30)

2.3 信号完整性的基本概念(30)

本章小结(31)

思考题(32)

第3章 高速逻辑电路分析(33)

3.1 高速TTL电路(33)

3.1.1 三极管的动态开关特性(33)

3.1.2 TTL基本电路的工作原理(34)

3.1.3 高速TTL的实现方式(36)

3.2 高速CMOS电路(39)

3.2.1 MOS管的开关特性(39)

3.2.2 CMOS基本电路(39)

3.2.3 CMOS电路的特性(42)

3.2.4 CMOS集成电路的特点(42)

3.2.5 CMOS电路输入/输出信号规则(43)

3.2.6 高速CMOS的实现方式(43)

3.2.7 CMOS电路的改进型(44)

3.2.8 如何选择TTL和CMOS器件(46)

3.3 ECL电路(46)

3.3.1 ECL器件原理及工作特性(46)

3.3.2 ECL发射极开路输出结构(50)

3.3.3 ECL电路的工作特点(51)

3.3.4 ECL电路中电容的影响(53)

3.3.5 ECL电路的设计原则(53)

3.3.6 PECL接口电路(55)

3.3.7 LVECL/ PECL/LVPECL电路比较(56)

3.4 LVDS器件与电路(57)

3.4.1 LVDS器件简介(57)

3.4.2 LVDS器件的工作原理(57)

3.4.3 LVDS电路设计(58)

3.4.4 LVDS的特点(59)

3.4.5 LVDS的应用模式(59)

3.4.6 LVDS系统的设计(59)

3.5 高速逻辑电路使用规则(60)

3.5.1 高速TTL的使用规则(60)

3.5.2 高速CMOS的使用条件(61)

3.5.3 LVDS设计注意的几个问题(61)

本章小结(62)

思考题(63)

第4章 高速数字信号的反射分析(64)

4.1 信号反射的机理(64)

4.1.1 反射的基本概念(64)

4.1.2 网格图和线性负载反射(66)

4.1.3 Bergeron图和非线性负载反射(67)

4.1.4 欠载传输线(68)

4.1.5 过载传输线(68)

4.2 产生反射现象的因素(69)

4.2.1 上升时间对反射的影响(70)

4.2.2 串联传输线的反射影响(70)

4.2.3 短分支传输线的反射影响(72)

4.2.4 容性分支在传输线中间引起的反射影响(72)

4.2.5 拐角和通孔的影响(74)

4.2.6 载重线的反射影响(75)

4.2.7 电感性间断的影响(76)

4.3 抑制反射的一般方法(79)

4.3.1 单端端接技术(80)

4.3.2 多负载端接技术(84)

本章小结(86)

思考题(86)

第5章 高速信号的串扰分析(87)

5.1 串扰基本知识(87)

5.1.1 串扰的基本概念(87)

5.1.2 串扰的来源(88)

5.1.3 电感矩阵和电容矩阵(88)

5.1.4 均匀传输线的串扰(89)

5.2 串扰机理分析(90)

5.2.1 串扰引起的噪声(90)

5.2.2 容性耦合与感性耦合(93)

5.2.3 近端串扰与远端串扰(95)

5.2.4 传输模式与串扰(97)

5.3 串扰的仿真分析(102)

本章小结(107)

思考题(108)

第6章 高速信号的开关噪声分析(109)

6.1 同步开关噪声的概念(109)

6.1.1 SSN噪声及其影响(109)

6.1.2 地弹效应(111)

6.2 同步开关噪声分析(112)

6.2.1 同步开关噪声的理论分析(112)

6.2.2 同步开关噪声电路分析(115)

6.3 降低开关噪声的电路设计(118)

6.3.1 去耦电容的使用(119)

6.3.2 驱动电路的设计(122)

6.3.3 芯片封装(125)

6.4 降低开关噪声的板级措施(128)

6.4.1 板级抑制SSN措施的基本方法(128)

6.4.2 应用二维PBG结构抑制SSN(130)

6.5 降低开关噪声的其他措施(132)

本章小结(133)

思考题(134)

第7章 高速信号的时序分析(135)

7.1 时序系统(135)

7.1.1 公共时钟同步的时序分析(135)

7.1.2 源时钟同步的时序分析(142)

7.1.3 其他总线数据传输技术(147)

7.2 时钟器件(148)

7.2.1 时钟树(148)

7.2.2 时钟缓冲器(151)

7.2.3 时钟发生器(156)

7.3 时钟抖动(157)

7.3.1 时钟抖动的产生(157)

7.3.2 时钟抖动的应用(159)

7.3.3 时钟抖动的影响(161)

7.3.4 时钟抖动的测量(161)

7.3.5 时钟抖动的诊断和抑制(163)

本章小结(164)

思考题(165)

第8章 高速信号的EMC分析(166)

8.1 电磁兼容中的接地技术(166)

8.1.1 概述(166)

8.1.2 接地的种类(166)

8.1.3 接地方式(167)

8.1.4 模拟电路与数字电路的接地(171)

8.1.5 接地电阻(172)

8.1.6 地线的设计(173)

8.2 电磁兼容中的屏蔽技术(173)

8.2.1 概述(173)

8.2.2 屏蔽的分类(174)

8.2.3 电磁屏蔽的设计(176)

8.2.4 印制电路板中的屏蔽(177)

8.2.5 屏蔽的设计原则(178)

8.3 电磁兼容中的滤波技术(178)

8.3.1 概述(178)

8.3.2 滤波器简介(178)

8.3.3 电磁干扰(EMI)滤波器的基本概念(180)

8.3.4 EMI滤波器的使用方法(182)

8.3.5 两种常用的EMI滤波器(184)

8.4 PCB中的电磁兼容(186)

本章小结(192)

思考题(193)

第9章 高速信号的电源完整性分析(194)

9.1 电源完整性概述(194)

9.1.1 电源完整性的相关概念(194)

9.1.2 电源噪声的起因及危害(194)

9.2 电源分配系统设计(196)

9.2.1 电源分配系统的分类(196)

9.2.2 常用的两种电源分配方案(198)

9.2.3 电源分配系统的阻抗设计(199)

9.2.4 电容在电源分配系统中的应用(201)

9.2.5 电源/地平面对模型分析(205)

9.3 电路板中电源系统设计(209)

9.3.1 叠层对电源分配系统的影响(209)

9.3.2 几种典型的叠层方案分析(212)

9.3.3 PCB上电源分配系统设计规则(213)

9.3.4 设计实例(215)

本章小结(217)

思考题(218)

第10章 信号完整性仿真分析模型(220)

10.1 Spice仿真模型原理与建模方法(220)

10.1.1 Spice模型概述(220)

10.1.2 Spice的功能和特点(220)

10.1.3 Spice模型的建模方法和不足(221)

10.2 IBIS仿真模型原理与建模方法(222)

10.2.1 IBIS模型概述(222)

10.2.2 IBIS模型的结构(223)

10.2.3 IBIS模型语法(224)

10.2.4 IBIS模型的建立(231)

10.2.5 IBIS模型的验证方法(235)

10.2.6 IBIS模型与信号完整性分析(240)

本章小结(250)

思考题(250)

第11章 高速电路的差分线设计(252)

11.1 差分线的基本概念(252)

11.1.1 差分信号的定义(252)

11.1.2 差分和共模(253)

11.1.3 奇模和偶模(254)

11.1.4 差分对和差分阻抗(256)

11.2 差分信号的阻抗分析与计算(257)

11.2.1 无耦合时的差分阻抗(257)

11.2.2 耦合时的差分阻抗(258)

11.2.3 返回电流分布对阻抗的影响(262)

11.2.4 差分阻抗的计算(264)

11.3 差分信号设计中存在的问题及其解决方案(268)

11.3.1 差分线的端接(268)

11.3.2 差分信号的错位与失真(270)

11.3.3 差分线的辐射干扰(272)

11.3.4 干扰线对差分信号的影响(274)

11.3.5 返回路径中的间隙(275)

11.3.6 紧密耦合与非紧密耦合的影响(276)

11.3.7 奇模状态与偶模状态的影响(277)

11.3.8 PCB中的差分走线原则(280)

本章小结(284)

思考题(285)

第12章 高速电路仿真设计实例(286)

12.1 仿真设计的可行性(286)

12.2 高速光纤收发模块仿真设计与分析(287)

12.2.1 SFP光收发模块的工作原理及设计要求(287)

12.2.2 SFP光收发模块的PCB设计与仿真分析(288)

12.2.3 SFP光收发模块的板级设计要求及板层设置(289)

12.2.4 SPF光收发模块布局的确定及仿真分析(290)

12.2.5 SFP光收发模块布线的仿真分析(291)

12.3 高速误码测试系统信号完整性仿真设计(295)

12.3.1 系统组成及工作原理(295)

12.3.2 PCB设计及信号完整性仿真分析(299)

12.4 FPGA实现高速误码测试的PCB仿真设计(306)

12.4.1 基于FPGA(FX100)的误码仪原理及硬件电路分析(306)

12.4.2 系统PCB设计及信号完整性仿真分析(312)

本章小结(318)

思考题(319)

参考文献

……[看更多目录]

序言随着电子技术和通信技术的快速发展,信号速率不断提高。同时,由于高速电路应用的迅速增多,高速芯片和器件也越来越被广泛使用。高速数字电路的设计技术十分复杂,尤其是大规模、超大规模集成电路越来越多地应用到电路系统中,芯片的集成规模越来越大,体积越来越小,引脚数越来越多,速率越来越高,随之带来的信号完整性问题也变得越来越突出,越来越引起人们的关注。由此可见,在当今快速发展的电子设计领域,由IC芯片构成的电子系统正朝着大规模、小体积、高速率的方向飞速发展。这样就带来了一个问题,即电子设计的体积减小导致电路的布局布线密度变大,而同时信号的频率还在不断提高,从而使得如何处理高速信号问题成为一个设计能否成功的关键因素。

同时,随着计算机仿真技术的发展,在高速数字电路设计中,仿真分析与设计的优越性越来越凸现出来。它给设计者以准确、直观的设计,便于及早发现问题并及时修改,从而缩短设计时间,降低设计成本。目前许多EDA工具都配有电路仿真功能,通过设计阶段的电路仿真,可以在很大程度上避免许多不必要的设计失误。利用电路仿真功能去验证电路,虽然看似“纸上谈兵”,但如果相关算法合理,并且器件模型构造和一些参数选取比较准确,以及考虑的问题比较全面,那么仿真结果应该是可靠的。

信号完整性工程是一门尚未成熟的学科,正处于不断地探索阶段,其分析方法和实践都还有待于不断完善,基于信号完整性分析的高速电路设计理论和技术也在不断地发展中。编写本书的目的就是在阐述高速信号完整性问题产生的机理和现象的基础上,给出用于高速电路设计、实现和分析的信号完整性仿真分析和设计方法。本书从高速信号与高速电路的基本概念和基本理论入手,分析信号完整性所涉及的机理、现象等,提出本书所要阐述的问题和解决方案。书中结合高速电路及其PCB设计分析和应用方案,介绍了目前国外最新的信号完整性分析常用工具及其仿真分析方法,结合所完成的科研项目的实践,给出了大量具体仿真设计实例,对高速电路的信号完整性从理论、技术到应用提出一整套解决方案。

文摘插图:

高速电路信号完整性分析与设计(电子信息与电气学科规划教材·电子信息科学与工程类专业)

第1章绪论

高速问题引起人们的注意,最早起源于一次“奇怪”的设计失败现象:美国硅谷一家著名的影像探测系统制造商早在7年前就已经成功设计、制造并上市的产品,却在最近从生产线下线的产品中出现了问题,新产品无法正常运行。这是个20 MHz的系统设计,似乎无须考虑高速设计方面的问题,更让产品设计工程师们感到困惑的是,新产品没有任何设计上的修改,甚至采用的元器件型号也与原始设计的要求一致,唯一的区别是集成电路(Ic)制造技术的进步,新采购的电子元器件实现了小型化、快速化。新的器件工艺技术使得新生产的每一个芯片都成为高速器件,也正是这些高速器件应用中的信号完整性问题导致了系统的失败。随着现代电子元器件工艺技术的发展,Ic开关速率的提高,信号的上升时间和下降时间迅速缩减,上升、下降时间越短,其谐波成分中的谐波频率越高,因此不管信号频率如何,系统都将成为高速系统并且会出现各种信号完整性问题。

比较10年前的一个低速器件和现今的高速器件在一段相同长度导线传播情况时可以发现,对于低速器件,传输导线可以看做是一段简单的导线,而对于现今的高速器件,信号的传播则表现出非常明显的波特性,高速的跳变信号会沿着传输线来回反射、振荡,形成常见的过冲和振铃。对于高速信号,除了需要考虑导线电阻对传输信号的影响外,还要考虑线电容、电感的影响,以及传输线之间的串扰。

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
>>返回首頁<<
 
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有