费马于1601年8月17日出生于法国南部图卢兹附近的博蒙德洛马涅。他的父亲多米尼克费马曾任法国图卢兹地方法院的法律顾问,后在当地开了一家大皮革商店,拥有相当丰厚的产业,使得费马可以生活在富裕舒适的环境中,费马的母亲名叫克拉莱德罗格,出身穿袍贵族。但费马小时候并没有因为家境的富裕而产生多少优越感。多米尼克的大富与罗格的大贵族构筑了费马极富贵的身价。
费马小时候受教于他的叔叔皮埃尔,受到了良好的启蒙教育,培养了他广泛的兴趣和爱好,对他的性格也产生了重要的影响。直到14岁时,费马才进入博蒙德洛马涅公学,毕业后先后在奥尔良大学和图卢兹大学学习法律。
17世纪的法国,男子最讲究的职业是当律师,因此,男子学习法律成为时髦,也使人敬羡。有趣的是,法国为那些有产的而缺少资历的“准律师”尽快成为律师创造了很好的条件。法国的买官特产,使许多中产阶级从中受惠,费马也不例外。费马尚没有大学毕业,便在博蒙德洛马涅买好了“律师”和“参议员”的职位。 1631年,费马毕业返回家乡以后,他便很容易地当上了图卢兹议会的议员。
在1629年之前,费马便着手重写公元前三世纪古希腊几何学家阿波罗尼奥斯失传的《平面轨迹》一书。他用代数方法对阿波罗尼奥斯关于轨迹的一些失传的证明作了补充,对古希腊几何学,尤其是阿波罗尼奥斯圆锥曲线论进行了总结和整理,对曲线作了一般研究。并于1630年用拉丁文撰写了仅有八页的论文《平面与立体轨迹引论》。
1642年,有一位叫勃里斯亚斯权威人士,他是最高法院顾问。勃里斯亚斯推荐费马进入了最高刑事法庭和法国大理院主要法庭。这使费马以后得到了更好的升迁机会。1646年,费马升任议会首席发言人,以后还当过天主教联盟的主席等职。费马的官场生涯没有什么突出政绩值得称道,不过费马从不利用职权向人们勒索、从不受贿、为人敦厚、公开廉明,赢得了人们的信任和称赞。
费马的婚姻使费马跻身于穿袍贵族的行列,费马娶了他的舅表妹露伊丝德罗格。原本就为母亲的贵族血统而感骄傲的费马,如今干脆在自己的姓名上加上了贵族姓氏的标志“de”,婚后生有三女二男。
对费马来说,真正的事业是学术,尤其是数学。费马通晓法语、意大利语、西班牙语、拉丁语和希腊语,而且还颇有研究。语言方面的博学给费马的数学研究提供了语言工具和便利,使他有能力学习和了解阿拉伯和意大利的代数以及古希腊的数学。正是这些,可能为费马在数学上的造诣莫定了良好基础。在数学上,费马不仅可以在数学王国里自由驰骋,而且还可以站在数学天地之外鸟瞰数学。这也不能绝对归于他的数学天赋,与他的博学多才多少也是有关系的。
费马生性内向,谦抑好静,不善推销自己,不善展示自我。因此他生前极少发表自己的论著,连一部完整的著作也没有出版。他发表的一些文章,也总是隐姓埋名。《数学论集》还是费马去世后由其长子将其笔记、批注及书信整理成书而出版的。
费马在数学方面作出了卓越的贡献,早年主要研究概率论,对于数论和解析几何都有深入研究。他对微分思想的运用比牛顿和莱布尼兹还要早,在他所著《求最大值和最小值的方法》一书中,已对微分理论进行了比较系统的探讨。他把直线平面坐标应用于几何学也早于笛卡儿,在其所著〈平面及空间位置理论的导言〉中,最早提出了一次方程代表直线,二次方程代表截线,对一次与二次方程的一般形式,也进行了研究。费马还研究了对方程ax2+1=Y2整数解的问题。得出了求导数所有约数的系统方法。
著名的费马大定理是费马提出的至今尚未解决的问题。1637年费马提出:“不可能把一个整数的立方表示成两个立方的和,把一个四次方幂表示成两个四次方幂的和,一般地,不可能把任一个次数大于2的方幂表示成两个同方幂的和。”1665年这一定理提出后,引起了许多著名数学家的关注,至今尚在研究如何证明它的成立,但始终毫无结果。
费马在光学方面,确立了几何光学的重要原理,命名为费马原理。这一原理是几何光学的最重要基本理论之一,对于笛卡儿的“光在密媒质中比在疏媒质中传播要快”的观点给予了有力的反驳,把几何光学的发展推向了新的阶段。
费马原理是根据经济原则提出的,它指出:光沿着所需时间为极值的路径传播。可以理解为,光在空间沿着光程为极值的路传播,即沿光程为最小、最大或常量路径传播。费马定理不但是正确的,同时它与光的反射定律和折射定律具有同等的意义。由于费马原理的确立,几何光学发展到了较为完善的程度。
费马一生身体健康,只是在1652年的瘟疫中险些丧命。1665年元旦一过,费马开始感到身体有变,因此于1月l0日停职。第三天,费马去世,享年64。费马被安葬在卡斯特雷斯公墓,后来改葬在图卢兹的家族墓地中。
相关研究领域:
1、数学——早年主要研究概率论,建立了概率论的基本原则——数学期望的概念。对于数论和解析几何都有深入研究。
2、物理--在物理光学领域确立了几何光学的重要原理——费马原理。
他的作品:
《求最大值和最小值的方法》
《平面及空间位置理论的导言》
《平面轨迹》
《平面与立体轨迹引论》
《数学论集》
费马小定理(Fermat's Little Theorem)
费马二平方数定理(Fermat's Two Squares Theorem)
费马定理(Fermat's Theorem)
参考资料:http://www.dhbc.net/datalib/2004/Celeb/DL/DL-168353