其实很简单,设四个连续自然数其中最小的一个数为n,则它们的乘机为
n(n+1)(n+2)(n+3),再加1为n(n+1)(n+2)(n+3)+1,则等于n(n+3)(n+1)(n+2),
所以等于(n^2+3n)(n^+3n+2)+1,把n^2+3n看成一个整体,所以(n^2+3n)^2+2(n^2+3n)+1,刚好是一个完全平方式:(n^2+3n+1)^2,括号里面的n^2+3n+1就表示的是一个整数.
注:n^2表示n的2次方
笑话军事旅游美容女性百态母婴家电游戏互联网财经美女干货家饰健康探索资源娱乐学院 数码美食景区养生手机购车首饰美妆装修情感篇厨房科普动物植物编程百科知道汽车珠宝 健康评测品位娱乐居家情感星座服饰美体奢侈品美容达人亲子图库折扣生活美食花嫁风景 | 首页 |
其实很简单,设四个连续自然数其中最小的一个数为n,则它们的乘机为
n(n+1)(n+2)(n+3),再加1为n(n+1)(n+2)(n+3)+1,则等于n(n+3)(n+1)(n+2),
所以等于(n^2+3n)(n^+3n+2)+1,把n^2+3n看成一个整体,所以(n^2+3n)^2+2(n^2+3n)+1,刚好是一个完全平方式:(n^2+3n+1)^2,括号里面的n^2+3n+1就表示的是一个整数.
注:n^2表示n的2次方