需要解题思路
若x,y∈R,且x∧2+y∧2=4,则2xy÷(x+y-2)的最小值?(x∧2表示x的平方)
參考答案:答:2xy÷(x+y-2)的最小值=2-2√2
解:
已知x^2+y^2=4,y^2=4-x^2,x+y≠2
2xy÷(x+y-2)
=[(x+y)^2-(x^2+y^2)]÷(x+y-2)
=[(x+y)^2-4]÷(x+y-2)
=[(x+y)+2]*[(x+y)-2]÷(x+y-2)
=(x+y+2)
设x+y+2=m
y=m-x-2
y^2=(m-x-2)^2=m^2+x^2+4-2mx+4x-4m
y^2=4-x^2
m^2+x^2+4-2mx+4x-4m=4-x^2
2x^2 +(4-2m)x+m^2-4m=0
上方程未知数为x的判别式△=(4-2m)-4*2*(m^2-4m)≥0
解上不等式,得
2-2√2≤m≤2+2√2
m的最小值=2-2√2
检验:
x+y+2=m=2-2√2
x+y=-2√2≠2