已知两条直线L1: X+(1+M)Y=2-M, L2: 2MX+4Y= -16,当且仅当M为何值时, L1 与L2有以下关系(1)相交:(2)平行:(3)重合
參考答案:解:
L1: X+(1+M)Y=2-M,Y=-X/(1+M)+(2-M)/(1+M),K1==-1/(1+M)
L2: 2MX+4Y= -16,Y=-MX/2-4,K2=-M/2
讨论:
(1)L1与L2相交时,K1≠K2
-1/(1+M)≠-M/2
(M+2)*(M-1)≠0
M1≠-2,M2≠1
(2)L1与L2平行时,K1=K2
-1/(1+M)=-M/2
(M+2)*(M-1)=0
M1=-2,M2=1
(3)L1与L2平行且重合时
K1=K2,M1=-2,M2=1
(2-M)/(1+M)=-4,M=-2
故M=-2
答:
(1)M≠-2或M≠1时, L1 与L2相交;
(2)M=-2或M=1时,L1 与L2平行;
(3)M=-2时,L1 与L2重合