已知数列{an}的前n项和为Sn,a1=1,Sn+1=3Sn+1(n∈N*).
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=(2n-1)a(2n-1)(n∈N*),求{bn}的前n项和Tn.
參考答案:解:(Ⅰ)当n≥2时,
Sn+1 = 3Sn + 1,S n = 3S(n-1) + 1,
两式相减,得a(n+1) = 3an.
由已知,得a1 + a2 = 3a1 + 1.
∴a2 = 3.
由此可见对一切 n∈N*,an不等于0,且(an+1)/an=3
所以{an}是以3为公比的等比数列,
故an = 3^(n-1)
(Ⅱ)bn = (2n-1)?9^(n-1).
Tn = 1×1 + 3×9 + 5×92 + … +(2n-1)?9^(n-1),
9Tn = 1×9 + 3×92 + 5×93 + … +(2n-1)?9^n.
②-①,得
-8 Tn = 1 + 2(9 + 9^2 + … +9 ^(n-1) )-(2n-1)?9^n
所以Tn=(n/4-5/32)9^n+5/32