这是一个年薪四十W的职位面试问题。
AB都不知道C的生日。但是知道是在这十个日期中的一个
3月4日 3月5日 3月8日 6月1日 6月7日 9月4日 9月5日 12月1日 12月2日12月8日 C告诉了A他是几月生的。告诉B他是几号生的。
于是A说,如果我不知道,B肯定不知道。
B说,本来我不知道,但是现在我知道了
A说,哦,那我也知道了。
你能说出是几月几号?以及理由
參考答案:答案应该是9月1日。
1)首先分析这10组日期,经观察不难发现,只有6月7日和12月2日这两组日期的
日数是唯一的。由此可知,如果小强得知的N是7或者2,那么他必定知道了老师的
生日。
2)再分析“小明说:如果我不知道的话,小强肯定也不知道”,而该10组日期的
月数分别为3,6,9,12,而且都相应月的日期都有两组以上,所以小明得知M后
是不可能知道老师生日的。
3)进一步分析“小明说:如果我不知道的话,小强肯定也不知道”,结合第2步
结论,可知小强得知N后也绝不可能知道。
4)结合第3和第1步,可以推断:所有6月和12月的日期都不是老师的生日,因为
如果小明得知的M是6,而若小强的N==7,则小强就知道了老师的生日。(由第
1步已经推出),同理,如果小明的M==12,若小强的N==2,则小强同样可以知道老师的生日。即:M不等于6和9。现在只剩下“3月4日 3月5日 3月8日 9月1日
9月5日”五组日期。而小强知道了,所以N不等于5(有3月5日和9月5日),此时,
小强的N∈(1,4,8)注:此时N虽然有三种可能,但对于小强只要知道其中的
一种,就得出结论。所以有“小强说:本来我也不知道,但是现在我知道了”,
对于我们则还需要继续推理
至此,剩下的可能是“3月4日 3月8日 9月1日”
5)分析“小明说:哦,那我也知道了”,说明M==9,N==1,(N==5已经被排除,3月份的有两组)