快快快
參考答案:第十七届“希望杯”全国数学邀请赛
参考答案及评分标准
初中二年级 第2试
一.选择题(每小题4分)
二.填空题(每小题4分)
三、解答题
21.(1)如图1,连结HF.由题知四边形EFGH是平行四
边形,所以
又
所以
所以 (3分)
所以△AHE和△DHG都是等腰直角三角形,故∠EHG= ,四边形EFGH是矩形.
易求得
所以四边形EFGH的周长
为2 ,面积为 .(5分)
(2)如图2,作点H关于AB边的对称点 ,连结 ,交AB于 ,连结
H.显然,点E选在 处时.EH+EF的值最小,最小值等于 .
(7分)
仿(1)可知当AE≠AH时,亦有
(8分)
所以
因此,四边形EFGH周长的最小值为2 .
(10分)
22.设A、B两个港口之间的距离为L,显然
(1分)
(1)若小船在23:00时正顺流而下,则小船由A港到达下游80千米处需用
即19:00时小船在A港,那么在3:00到19:00的时间段内,小船顺流行驶的路程与逆流行驶的路程相同,而所用的时间与速度成反比,设小船顺流行驶用了t小时,则逆流行驶用了(16一t)小时,所以
解得 t=6 (5分)
即顺流行驶了
由于
所以A、B两个港口之间的距离是120千米.
(7分)
(2)若小船在23:00时正逆流而上,则小船到达A港需再用
即小船在
内顺流行驶的路程与逆流行驶的路程相同,而所用的时间与速度成反比,设小船顺流行驶用了 小时,则逆流行驶用了 小时,所以
解得 (12分)
即顺流行驶了
由于
所以A、B两个港口之间的距离可能是100千米或200千米. (14分)
综上所述,A、B两港口之间的距离可能是100千米或120千米或200千米. (15分)
23.(1)第3次操作后所得到的9个数为
它们的和为 (4分)
(2)由题设知 =5,则
(10分)
(3)因为
所以
(15分)