分享
 
 
 

谁有06届三次学海联考题?

王朝知道·作者佚名  2010-07-08
窄屏简体版  字體: |||超大  
 
分類: 教育/科學 >> 升學入學 >> 高考
 
問題描述:

理科-学海大联考——除过英语其余全要。

參考答案:

这里有数学

学 海 大 联 考

2005届高三第三次联考数学

命题:湖北荆门龙泉中学 郑胜 审定:武汉市学海教科所

本试卷分第I卷(选择题)和第II卷(非选择题)两部分.共150分.考试时间为120分钟.

参考公式:Pn(k)=CnkPk(1-P)n-k

如果事件A、B互斥,那么 球的表面积公式

P(A+B)=P(A)十P(B) S=4πR2

如果事件A、B相互独立,那么 其中R表示球的半径

P(A·B)=P(A)·P(B) 球的体积公式

如果事件A在一次试验中发生的概率是P, V=34πR3

那么n次独立重复试验中恰好发生k次的概率 其中R表示球的半径

第I卷(选择题,共60分)

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.设全集U=R,集合A=(1,+∞),集合B=(-∞,2)。则 U(A∩B)=

A.(-∞,1)∪(2,+∞) B.(-∞,1)∪[2,+∞)

C.(-∞,1]∪[2,+∞) D.(-∞,1]∪(2,+∞)

2.在(1+x)5+(1+x)6+(1+x)7的展开式中,x4项的系数是首项为-2、公差为3的等差数列{an}的第k项,则k=

A.22 B.19 C.20 D.21

3.已知数列{an},如果a1,a2-a1,a3-a2,…,an-an-1,…,是首项为1,公比为13的等比数列,则an=

A.32(1-13n) B.32(1-13n-1) C.23(1-13n) D.23(1-13n-1)

4.在边长为1的正△ABC中,若 , , ,则 · + · + · =

A.32 B.-32 C.3 D.0

5.已知集合A={f(x)|f(x+1)=-f(x),x∈R},B={f(x)|f(x+2)=-f(-x),x∈R},若f(x)=sin x,则

A.f(x)∈A但f(x) B B.f(x)∈A且f(x)∈B

C.f(x) A但f(x)∈B D.f(x) A且f(x) B

6.有3个相识的人某天乘同一火车外出,假设火车有10节车厢,那么至少有2人在同一节车厢相遇的概率是

A.29200 B.725 C.29144 D.718

7.把点(3,4)按向量 平移后的坐标为(-2,1),则y=2x的图象按向量 平移后的图象的函数表达式为

A.y=2x-5+3 B.y=2x-5-3 C.y=2x+5+3 D.y=2x+5-3

8.如图,在正方体ABCD-A1B1C1D1中,点E在A1D上且A1E=2ED,点F在AC上且CF=2FA,则EF与BD1的位置关系是

A.相交不垂直 B.相交垂直

C.平行 D.异面

9.椭圆上一点A看两焦点的视角为直角,设AF1的延长线交椭圆于B,又|AB|=|AF2|,则椭圆的离心率e=

A.-2+22 B.6-3

C.2-1 D.3-2

10.直角三角形ABC的斜边AB=2,内切圆半径为r,则r的最大值是

A.2 B.1 C.22 D.2-1

11.如图,直线Ax+By+C=0(AB≠0)的右下方有一点(m,n),则Am+Bn+C的值

A.与A同号,与B同号 B.与A同号,与B异号

C.与A异号,与B同号 D.与A异号,与B异号

12.设方程2x+x+2=0和方程log2x+x+2=0的根分别为p和q,函数f(x)=(x+p)(x+q)+2,则

A.f(2)=f(0)<f(3) B.f(0)<f(2)<f(3) C.f(3)<f(0)=f(2) D.f(0)<f(3)<f(2)

第II卷(非选择题,共90分)

二、填空题:本大题共4小题,每小题4分,共16分.把答案填在横线上.

13.等差数列{an}中,a1=3,前n项和为Sn,且S3=S12。则a8=_________.

14.对于-1<a<1,使不等式(12) <(12)2x+a-1成立的x的取值范围是_________.

15.正三棱锥P-ABC的四个顶点同在一个半径为2的球面上,若正三棱锥的侧棱长为23,则正三棱锥的底面边长是____________.

16.给出下列图象

其中可能为函数f(x)=x4+ax3+bx2+cx+d(a,b,c,d∈R)的图象的是_____.

答题卡

题号 1 2 3 4 5 6 7 8 9 10 11 12

答案

13.__________________ 14.__________________

15.__________________ 16.__________________

三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.

17.(本题满分12分)(理)已知复数z1=cos3 2+isin3 2,z2=cos 2-isin 2, ∈[0, 2]。

⑴求|z1+z2|;

⑵设f( )=cos2 -2x|z1+z2|(x∈R)的最小值为g(x),求g(x)的表达式。

(文)函数f(x)=x3+ax2+bx+c的图象在点(1,f(1))处切线的斜率为0。

⑴求a,b的关系式;

⑵若f(x)在R上是增函数,求a,b的值.

18.(本题满分12分)如图,△AOE和△BOE都是边长为1的等边三角形,延长OB到C使|BC|=t(t>0),连AC交BE于D点.

⑴用t表示向量 和 的坐标;

⑵(理)求向量 和 的夹角的大小。

(文)当 =32 时,求向量 和 的夹角的大小。

19.(本题满分12分)一条直角走廊宽1.5米,如图所示,现有一转动灵活的手推车,其平板面的矩形宽为1米,问要想顺利推过直角走廊,平板车的长度不能超过多少米?

20.(本题满分12分)如图,已知三棱柱ABC-A1B1C1的底面是边长为2的正三角形,侧棱A1A与AB、AC均成45°角,且A1E⊥B1B于E,A1F⊥CC1于F.

⑴求证:平面A1EF⊥平面B1BCC1;

⑵求直线AA1到平面B1BCC1的距离;

⑶当AA1多长时,点A1到平面ABC与平面B1BCC1的距离相等.

21.(本题满分l2分)设an=1+q+q2+…+qn-1(n∈N+,q≠±1),An= a1+ a2+…+ an

⑴用q和n表示An;

⑵当-3<q<1时,求 An2n的值;

⑶又设b1+b2+…+bn=An2n,求证数列{bn}是等比数列。

(文科只做⑴⑶,理科全做)

22.(本题满分14分)(理)已知函数f(x)=x·ax-1(a>0,x∈R) .

⑴当a>1时,求f(x)的单调区间和值域,并证明方程f(x)=0有唯一根;

⑵当0<a≤1时,讨论方程f(|x|)=0的实根的个数情况,并说明理由。

(文)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点为F,过F且倾角为30°的直线l与双曲线的左、右两支分别相交于A、B两点。设|AF|= |BF|,若2≤ ≤3,求双曲线C的离心率e的取值范围.

高三·三联·数学·参考答案

一、选择题

题号 1 2 3 4 5 6 7 8 9 10 11 12

答案 C C A B B B D C B D B A

二、填空题13.0_ 14.x≤0或x≥2 15.3_ 16.①③

三、解答题17.(12分)解:(理)⑴|z1+z2|=|(cos3 2+cos 2)+i(sin3 2-sin 2)|

=(cos3 2+cos 2)2+(sin3 2-sin 2)2=2+2(cos3 2cos 2-sin3 2sin 2)

=2+2cos2 =2|cos ………………………………………………………………4分

∵ ∈[0, 2],∴cos ≥0,故|z1+z2|=2cos 。……………………………………5分

⑵f( )=cos2 -2x·2cos =2cos2 -4x·cos -1=2(cos -x)2-2x2-1……7分

∵ ∈[0, 2],∴cos ∈[0,1]

若0≤x≤1,则当cos =x时,f( )有最小值-2x2-1,即g(x)=-2x2-1;……8分

若x<0,则当cos =0时,f( )有最小值-1,即g(x)=-1;……………………9分

若x>1,则当cos =1时,f( )有最小值1-4x,即g(x)=1-4x。………………10分

∴g(x)= ……………………………………………………12分

(文)⑴f ′(x)=3x2+2ax+b……………………………………………………………… 分

由f ′(1)=0得3+2a+b=0 ∴2a+b+3=0………………………………………… 分

由条件f ′(x)≥0对x∈R恒成立,即3x2+2ax+b≥0对x∈R成立,而2a+b+3=0… 分

∴△≤0得(a+3)2≤0…………………………………………………………………… 分

∴a=-3,b=3………………………………………………………………………… 分

18.解:⑴ =(12(t+1),-32(t+1)),………………………………………………2分

∵ =t ,∴ =t , =11+t ,又 =(12,32),

= - =(12t,-32(t+2));∴ =(t2(t+1),-3(t+2)2(t+1)),………………4分

∴ =(2t+12(t+1),-32(t+1))………………………………………………6分

⑵(理)∵ =(t-12,-3(t+1)2),

∴ · =2t+12(t+1)·t-12+32(t+1)·3(t+1)2=t2+t+12(t+1)………………………………8分

又∵| |·| |=(2t+1)2+12(t+1)·(t-1)2+3(t+1)22=t2+t+1t+1…………………………10分

∴cos< , >= · | |·| |=12,∴向量 与 的夹角为60°。……12分

(文)由已知t=12,∴ =(23,-33), =(-14,-334)

∴ · =-16+34=712……………………………………………………………8分

又∵| |=73,| |=274=72………………………………………………10分

∴cos< , >=71276=12,∴向量 与 的夹角为60°。………………12分

19.(12分)解:如图,延长AB交直角走廊于A1、B1,设∠CDE1= ,则∠B1A1E1= , ∈(0, 2),

∵CD=AB=A1B1-AA1-BB1,而A1B1=1.5(1sin +1cos ),AA1=cot ,BB1=tan ,

∴CD=1.5(1sin +1cos )―cot ―tan =3(sin +cos )-22sin cos …6分

令sin +cos =t,则t∈(1,2]。令f(t)=3t-2t2-1=3t+1+1t2-1………………………10分

则当t=2时,两项均取得最小值,即 = 4时,f(t)min=32-2

即CDmin=32-2,故平板车的长度不能超过32-2米……………………………12分

20.(12分)⑴CC1‖BB1,又BB1⊥A1E,∴CC1⊥A1E,而CC1⊥A1F,∴CC1⊥平面A1EF,∴平面A1EF⊥平面B1BCC1………………………………………………………………2分

⑵作A1H⊥EF于H,则A1H⊥面B1BCC1,∴A1H为A1到面B1BCC1的距离,在△A1EF中,A1E=A1F=2,EF=2,∴△A1EF为等腰Rt△且EF为斜边,∴A1H为斜边上中线,可得A1H=12EF=1…………………………………………………………………………8分

⑶作A1G⊥面ABC于G,连AG,则A1G就是A1到面ABC的距离,且AG是∠BAC的角平分线,A1G=1…………………………………………………………………………10分

∵cos∠A1AG=cos45°cos30°=63,∴sin∠A1AG=33,∴A1A=133=1……………………12分

21.(12分)解:⑴∵q≠1,∴an=1-qn1-q………………………………………………文2分

∴An=1-q1-q +1-q21-q +…+1-qn1-q

=11-q[( + +…+ )-(q +q2 +…+qn )]

=11-q[( + +…+ )-( +q +q2 +…+qn )]…………………文5分

=11-q[2n-(1+q)n](q≠1) ………………………………………………理4分 文6分

⑵An2n=11-q[1-(1+q2)n],∵-3<q<1,∴|1+q2|<1,∴ An2n=11-q…………理6分

⑶∵b1+b2+…+bn=An2n=11-q[1-(1+q2)n],

∴b1+b2+…+bn-1=11-q[1-(1+q2)n-1]

∴bn=11-q(1+q2)n-1·(-1+q2+1)=12·(1+q2)n-1(n≥2) ……………………………10分

当n=1时,b1=A12=12适合上式,∴bn=12(1+q2)n-1(n∈N+) ………………………11分

∴bn+1bn=1+q2≠0(∵q≠-1),∴数列{bn}是等比数列。………………………………12分

22.(14分)解:(理)⑴f ′(x)=ax+x·axlna=(1+xlna)ax(a>1)…………①

由f ′(x)>0得1+xlna>0,解得x>-1lna;由f ′(x)<0得1+xlna<0,解得x<-1lna

∴f(x)的单调增区间为(-1lna,+∞),单调减区间为(-∞,-1lna)…………………2分

当x=-1lna时,f(x)min=f(-1lna)=-1lna·a-1lna-1=-1lna·1e-1=-1elna-1,

又 f(x)=-1, f(x)=+∞,∴f(x)的值域为[-1elna-1,+∞)……………4分

又∵f(0)=-1<0, f(x)=+∞,又f(x)在[0,+∞)上递增,

∴方程f(x)=0在[0,+∞)上有唯一实根………………………………………………6分

而 f(x)=-1<0,∴方程f(x)=0在(-∞,0)上无实根

∴方程f(x)=0有唯一实根,y=f(x)在(-∞,0)上函数值y均小于0………………7分

⑵∵函数f(|x|)为偶函数,故只需讨论x≥0时,方程f(|x|)=0亦可求f(x)=0的实根的个数。

Ⅰ.当a=1时,方程f(x)=0有唯一实根x=1;………………………………………8分

Ⅱ.当0<a<1时,由①式,同理可知x≥0时,f(x)的单调增区间为(0,-1lna),单调减区间为(-1lna,+∞)。当x=-1lna时,f(x)max=-1elna-1,……………………………9分

又∵f(0)=-1<0, f(x)=-1,故有

当-1elna-1<0即0<a< 时,方程f(x)=0无实根;

当-1elna-1=0即a= 时,方程f(x)=0有唯一实根;

当-1elna-1>0即 <a<1时,方程f(x)=0有两个实根;…………………………12分

综上可知:

当0<a< 时,方程f(|x|)=0无实根;

当a= 或1时,方程f(|x|)=0有两个实根;

当 <a<1时,方程f (|x|)=0有四个实根。…………………………………………14分

(文)解:设A(x1,y1),B(x2,y2),∵|AF|= |BF|,又B在AF上,∴ = ,

∴(c-x1,-y1)= (c-x2,-y2),∴y1= y2,…………①

把l的方程:y=33(x-c)即x=3y+c代入x2a2-y2b2=1中,

整理得(3b2-a2)y2+23b2cy+b4=0,…………………………………………4分

∴y1+y2=-23b2c3b2-a2…………②,y1y2=b43b2-a2…………③…………………7分

把①代入②、③得

∴(1+ )y2=-23b2c3b2-a2…………④, y22=b43b2-a2…………⑤

④2/⑤消去y2得(1+ )2 =12c23b2-a2=12c23c2-4a2=12e23e2-4………………………9分

设f( )=(1+ )2 = +1 +2(2≤ ≤3),易知f( )在区间[2,3]上递增,

∴f(2)≤f( )≤f(3)即92≤f( )≤163,………………………………………………11分

∴92≤12e23e2-4≤163解得163≤e2≤12即433≤e≤23

∴双曲线C的离心率e的取值范围为[433,23]。……………………14分

小贴士:① 若网友所发内容与教科书相悖,请以教科书为准;② 若网友所发内容与科学常识、官方权威机构相悖,请以后者为准;③ 若网友所发内容不正确或者违背公序良俗,右下举报/纠错。
 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有