已知椭圆两焦点f1(0,-1)f2(0,1),直线y=4是椭圆的一条准线,点p在椭圆上,且│pf1│-│pf2│=1,求tan∠f1pf2
參考答案:a*a/c=4(因为是准线)
c=1
所以 a=2
因为是椭圆,pf1+pf2=2*a=4
所以pf1= 2.5 pf2=1.5
在三角形pf1f2中用余弦公式 得cosf1pf2,从而可求出tanf1pf2
笑话军事旅游美容女性百态母婴家电游戏互联网财经美女干货家饰健康探索资源娱乐学院 数码美食景区养生手机购车首饰美妆装修情感篇厨房科普动物植物编程百科知道汽车珠宝 健康评测品位娱乐居家情感星座服饰美体奢侈品美容达人亲子图库折扣生活美食花嫁风景 | 首页 |
已知椭圆两焦点f1(0,-1)f2(0,1),直线y=4是椭圆的一条准线,点p在椭圆上,且│pf1│-│pf2│=1,求tan∠f1pf2
參考答案:a*a/c=4(因为是准线)
c=1
所以 a=2
因为是椭圆,pf1+pf2=2*a=4
所以pf1= 2.5 pf2=1.5
在三角形pf1f2中用余弦公式 得cosf1pf2,从而可求出tanf1pf2