设P(p,p^3)是双曲线C:y=X^3上的一点,过点P引曲线C的切线,将切线以点P为中心沿逆时针方向旋转45度,得到直线L
问1)求直线L的方程
2)当直线L与曲线C相交于相异的三点时,求p的取值范围
麻烦详细说明,谢谢
參考答案:y'=3x²
过P点的C的切线斜率为3p²
设tanθ=3p²
旋转后,斜率为tan(θ+45度)=(1+3p²)/(1-3p²)
L的方程为(斜截式)
y-p³=[(1+3p²)/(1-3p²)](x-p)
将y=x³带入L的方程可得
x³-p³=[(1+3p²)/(1-3p²)](x-p)
(x-p)(x²+px+p²)=[(1+3p²)/(1-3p²)](x-p)
若直线L与曲线C相交于相异的三点,则除去P点,还有两个相异的点
所以
x²+px+p²=(1+3p²)/(1-3p²)有两相异的根
则Δ>0
p²-4[p²-(1+3p²)/(1-3p²)]>0
(4+12p²)/(1-3p²)-3p²>0
1-3p²>0时:
4+12p²-3p²+9p^4>0
9p^4+9p²+4>0
9(p^4+p²+1/4)>-7/4
所以
-√3/3<p<√3/3
1-3p²<0时:
4+12p²-3p²+9p^4<0
9p^4+9p²+4<0
9(p^4+p²+1/4)<-7/4
空集
综上所述-√3/3<p<√3/3