什么是梅森数、完全数、亲和数?
參考答案:17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1代数式,当p是质数时,2^p-1是质数。他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。
还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证。梅森去世250年后,美国数学家科勒证明,2^67-1=************761838257287,是一个合数。这是第九个梅森数。20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难。
现在,数学家找到的最大的梅森数是一个有378632位的数:2^1257787-1。数学虽然可以找到很大的质数,但质数的规律还是无法循通。
完全数
如果整数a能被b整除,那么b就叫做a的一个因数。
例如,1、2、3、4、6都是12的因数。有一种数,它恰好等于除去它本身以外的一切因数的和,这种数叫做完全数。例如,6就是最小的一个完全数,因为除6以外的6的因数是1、2、3,而6=1+2+3。
亲和数
古希腊数学家毕达哥拉斯在自然数研究中发现,220的所有真约数(即不是自身 的约数)之和为:
1+2+4+5+10+11+20+22+44+55+110=284。而284的所有真约数为1、2、4、71、 142,加起来恰好为220。人们对这样的数感到很惊奇,并称之为亲和数。一般地讲, 如果两个数中任何一个数都是另一个数的真约数之和,则这两个数就是亲和数。
220和284是人类最早发现,又是最小的一对亲和数。第二对亲和数(17296, 18416)直到2000多年后的1636年才由法国数学家费马发现。1638年,法国数学家笛 卡儿发现了第三对亲和数,而大数学家欧拉在1747年一下子给出了30对亲和数, 1750年又增加到60对。到目前为止,人类已经发现了近千对亲和数。然而,令人惊 奇的是,第二对最小的亲和数(1184,1210)竟然被数学家们遗漏了,直到1886年才 由意大利的一位16岁男孩发现。
亲和数还可以推广为若干个数组成的亲和数链,链中的每一个数的真约数之和 恰好等于下一个数。如此连续,最后一个数的真约数之和等于第一个数。目前发现的最大的亲和数链由28个数构成,这个链的第一个数是14316。