答:
cos(α-β)=59/72
cos(α+β)=-5/13
解:
cosα-cosβ=1/2,
(cosα-cosβ)^2=1/4
cos^2α+cos^2β-2cosα*cosβ=1/4......(1)
sinα-sinβ=1/3
(sinα-sinβ)^2=1/9
sin^2α+sin^2β-2sinα*sinβ=1/9......(2)
(1)+(2),得
2-2*(cosα*cosβ+sinα*sinβ)=13/36
2-2cos(α-β)=13/36
cos(α-β)=59/72
(2)-(1)
sin^2α-cos^2α+sin^2β-cos^2β-2sinα*sinβ+2cosα*cosβ=-5/36
-(cos2α+os2β)+2cos(α+β)=-5/36
-2*cos(α+β)*cos(α-β)+2cos(α+β)=-5/36
cos(α+β)*[2-2cos(α-β)]=-5/36
cos(α+β)*(2-2*59/72)=-5/36
cos(α+β)=-5/13