如图:在Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB\BC分别交于点D\E,求AD的长.
參考答案:解:设AD中点为F,连接CF。由已知有:AC=CD(以点C为圆心,CA为半径的圆与AB 交于点D),则CF垂直AB,AD=2AF=2DF(等腰三角形的性质)。Rt△ABC中,∠C=90°,AC=3,BC=4,则AB=5.
又cosA=BC/AB=3/5;三角形ACF中,cosA=AF/AC=AF/3;得AF=9/5。
又AD=2AF=18/5。
笑话军事旅游美容女性百态母婴家电游戏互联网财经美女干货家饰健康探索资源娱乐学院 数码美食景区养生手机购车首饰美妆装修情感篇厨房科普动物植物编程百科知道汽车珠宝 健康评测品位娱乐居家情感星座服饰美体奢侈品美容达人亲子图库折扣生活美食花嫁风景 | 首页 |
如图:在Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB\BC分别交于点D\E,求AD的长.
參考答案:解:设AD中点为F,连接CF。由已知有:AC=CD(以点C为圆心,CA为半径的圆与AB 交于点D),则CF垂直AB,AD=2AF=2DF(等腰三角形的性质)。Rt△ABC中,∠C=90°,AC=3,BC=4,则AB=5.
又cosA=BC/AB=3/5;三角形ACF中,cosA=AF/AC=AF/3;得AF=9/5。
又AD=2AF=18/5。