证明:a^3+b^3+c^3≥3abc
參考答案:先证a^3+b^3>=ba^2+ab^2:
(a^3+b^3)-(ba^2+ab^2)=(a^3-ba^2)-(ab^2-b^3)
=(a-b)a^2-(a-b)b^2=(a^2-b^2)(a-b)=(a+b)(a-b)^2
因为a>0,b>0,易知上式大于等于零,故a^3+b^3>=ba^2+ab^2成立.
同理可得b^3+c^3>=bc^2+cb^2,a^3+c^3>=ca^2+ac^2,三式相加得
2(a^3+b^3+c^3)>=(ba^2+bc^2)+(ab^2+ac^2)+(cb^2+ca^2)
=b(a^2+c^2)+a(b^2+c^2)+c(a^2+b^2)
>=b*2ac+a*2bc+c*2ab=6abc
所以a^3+b^3+c^3>=3abc(当且仅当a=b=c时取等号)