Fast-ICA算法是芬兰赫尔辛基工业大学计算机及信息科学实验室Hyvarien等人提出并发展起来的。Fast-ICA算法基于非高斯性最大化原理,使用固定点(Fixed-point)迭代理论寻找WTX的非高斯性最大值,该算法采用牛顿迭代算法对测量变量X的大量采样点进行批处理,每次从观测信号中分离出一个独立分量,是独立分量分析的一种快速算法。该算法的非高斯型度量函数为:
笑话军事旅游美容女性百态母婴家电游戏互联网财经美女干货家饰健康探索资源娱乐学院 数码美食景区养生手机购车首饰美妆装修情感篇厨房科普动物植物编程百科知道汽车珠宝 健康评测品位娱乐居家情感星座服饰美体奢侈品美容达人亲子图库折扣生活美食花嫁风景 | 首页 |
Fast-ICA算法是芬兰赫尔辛基工业大学计算机及信息科学实验室Hyvarien等人提出并发展起来的。Fast-ICA算法基于非高斯性最大化原理,使用固定点(Fixed-point)迭代理论寻找WTX的非高斯性最大值,该算法采用牛顿迭代算法对测量变量X的大量采样点进行批处理,每次从观测信号中分离出一个独立分量,是独立分量分析的一种快速算法。该算法的非高斯型度量函数为: