分享
 
 
 

动态视觉:从图像到面部识别DYNAMIC VISION: FROM IMAGES TO FACE RECOGNITION

动态视觉:从图像到面部识别DYNAMIC VISION: FROM IMAGES TO FACE RECOGNITION  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,进口原版书,科学与技术 Science & Techology ,

作者: Shaogang Gong等著

出 版 社:

出版时间: 2000-12-1字数:版次: 1页数: 344印刷时间: 2000/09/01开本:印次: 1纸张: 胶版纸I S B N : 9781860941818包装: 精装内容简介

Face recognition is a task that the human vision system seems to perform almost effortlessly, yet the goal of building computer-based systems with comparable capabilities has proven to be difficult. The task implicitly requires the ability to locate and track faces through often complex and dynamic scenes. Recognition is difficult because of variations in factors such as lighting conditions, viewpoint, body movement and facial expression. Although evidence from psychophysical and neurobiological experiments provides intriguing insights into how we might code and recognise faces, its bearings on computational and engineering solutions are far from clear. The study of face recognition has had an almost unique impact on computer vision and machine learning research at large. It raises many challenging issues and provides a good vehicle for examining some difficult problems in vision and learning. Many of the issues raised are relevant to object recognition in general.

This book describes the latest models and algorithms that are capable of performing face recognition in a dynamic setting. The key question is how to design computer vision and machine learning algorithms that can operate robustly and quickly under poorly controlled and changing conditions. Consideration of face recognition as a problem in dynamic vision is perhaps both novel and important. The algorithms described have numerous potential applications in areas such as visual surveillance, verification, access control, video-conferencing, multimedia and visually mediated interaction.

The book will be of special interest to researchers and academics involved in machine vision, visual recognition and machine learning. It should also be of interest to industrial research scientists and managers keen to exploit this emerging technology and develop automated face and human recognition systems. It is also useful to postgraduate students studying computer science, electronic engineering, information or systems engineering, and cognitive psychology.

目录

Preface

PART I BACKGROUND

1 About Face

1.1 The Visual Face

1.2 The Changing Face

1.3 Computing Faces

1.4 Biological Perspectives .

1.5 The Approach

2 Perception and Representation

2.1 A Distal Object

2.2 Representation by 3D Reconstruction

2.3 Two-dimensional View-based Representation

2.4 Image Template-based Representation

2.5 The Correspondence Problem and Alignment

2.6 Biological Perspectives

2.7 Discussion

3 Learning under Uncertainty

3.1 Statistical Learning

3.2 Learning as Function Approximation

3.3 Bayesian Inference and MAP Classification

3.4 Learning as Density Estimation

3.4.1 Parametric Models

3.4.2 Non-parametric Models

3.4.3 Semi-parametric Models

3.5 Unsupervised Learning without Density Estimation

3.5.1 Dimensionality Reduction

3.5.2 Clustering

3.6 Linear Classification and Regression

3.6.1 Least-squares

3.6.2 Linear Support Vector Machines

3.7 Non-linear Classification and Regression

3.7.1 Multi-layer Networks

3.7.2 Support Vector Machines

3.8 Adaptation

3.9 Biological Perspectives

3.10 Discussion

PART II FROM SENSORY TO MEANINGFUL PERCEPTION

4 Selective Attention: Where to Look

4.1 Pre-attentive Visual Cues from Motion .

4.1.1 Measuring Temporal Change

4.1.2 Motion Estimation

4.2 Learning Object-based Colour Cues

4.2.1 Colour Spaces

4.2.2 Colour Density Models

4.3 Perceptual Grouping for Selective Attention

4.4 Data Fusion for Perceptual Grouping

4.5 Temporal Matching and Tracking

4.6 Biological Perspectives

4.7 Discussion

5 A Face Model: What to Look For

5.1 Person-independent Face Models for Detection

5.1.1 Feature-based Models

5.1.2 Holistic Models

5.1.3 The Face Class

5.2 Modelling the Face Class

5.2.1 Principal Components Analysis for a Face Model

5.2.2 Density Estimation in Local PCA Spaces

5.3 Modelling a Near-face Class

5.4 Learning a Decision Boundary

……

6 Undersanding Pose

7 Prediction and Adaptation

PART III MODELS OF IKDENTITY

8 Single-View Identification

9 Multi-View Identification

10 Identifying Moving Faces

PART IV PERCEPTION IN CONTEXT

11 Perceptual Integration

12 Beyond Faces

PART V APPENDICES

A Databases

B Commercial Systems

C Mathematical Details

Bibliography

Index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有