分享
 
 
 

Statistical and computational inverse problems统计的和计算的反演问题

Statistical and computational inverse problems统计的和计算的反演问题  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,进口原版书,科学与技术 Science & Techology ,

作者: Jari Kaipio 著

出 版 社:

出版时间: 2004-12-1字数:版次: 1页数: 339印刷时间: 2004/12/01开本: 16开印次: 1纸张: 胶版纸I S B N : 9780387220734包装: 精装内容简介

The book develops the statistical approach to inverse problems with an emphasis on modeling and computations. The framework is the Bayesian paradigm, where all variables are modeled as random variables, the randomness reflecting the degree of belief of their values, and the solution of the inverse problem is expressed in terms of probability densities. The book discusses in detail the construction of prior models, the measurement noise modeling and Bayesian estimation. Markov Chain Monte Carlo-methods as well as optimization methods are employed to explore the probability distributions. The results and techniques are clarified with classroom examples that are often non-trivial but easy to follow. Besides the simple examples, the book contains previously unpublished research material, where the statistical approach is developed further to treat such problems as discretization errors, and statistical model reduction. Furthermore, the techniques are then applied to a number of real world applications such as limited angle tomography, image deblurring, electrical impedance tomography and biomagnetic inverse problems. The book is intended to researchers and advanced students in applied mathematics, computational physics and engineering. The first part of the book can be used as a text book on advanced inverse problems courses.

The authors Jari Kaipio and Erkki Somersalo are Professors in the Applied Physics Department of the University of Kuopio, Finland and the Mathematics Department at the Helsinki University of Technology, Finland, respectively.

目录

Preface

1 Inverse Problems and Interpretation of Measurements

1.1 Introductory Examples

1.2 Inverse Crimes

2 Classical Regularization Methods

2.1 Introduction: Fredholm Equation

2.2 Truncated Singular Value Decomposition

2.3 Tikhonov Regularization

2.3.1 Generalizations of the Tikhonov Regularization

2.4 Regularization by Truncated Iterative Methods

2.4.1 Landweber-Fridman Iteration

2.4.2 Kaczmarz Iteration and ART

2.4.3 Krylov Subspace Methods

2.5 Notes and Comments

3 Statistical Inversion Theory

3.1 Inverse Problems and Bayes' Formula

3.1.1 Estimators

3.2 Construction of the Likelihood Function

3.2.1 Additive Noise

3.2.2 Other Explicit Noise Models

3.2.3 Counting Process Data

3.3 Prior Models

3.3.1 Gaussian Priors

3.3.2 Impulse Prior Densities

3.3.3 Discontinuities

3.3.4 Markov Random Fields

3.3.5 Sample-based Densities

3.4 Gaussian Densities

3.4.1 Gaussian Smoothness Priors

3.5 Interpreting the Posterior Distribution

3.6 Markov Chain Monte Carlo Methods

3.6.1 The Basic Idea

3.6.2 Metropoli-Hastings Constluetion of the Kernel

3.6.3 Gibbs Samples"

3.6.4 Convergence

3.7 Hierarcieal Models

3.8 Notes and Comments

4 Nonstationary Inverse Problems

4.1 Bayesian Filtering

4.1.1 A Nonstationary Inverse Problem

4.1.2 Evolution and Observation Models

4.2 Kalman Filters

4.2.1 Linear Gaussian Problems

4.2.2 Extended Kalman Filters

4.3 Particle Filters

4.4 Spatial Priors

4.5 Fixed-lag and Fixed-interval Smoothing

4.6 Higher-order Markov Models

4.7 Notes and Comments

5 Classical Methods Revisited

5.1 Estimation Theory

5.1.1 Maximum Likelihood Estimation

5.1.2 Estimators Induced by Bayes Costs

5.1.3 Estimation Error with Affine Estimators

5.2 Test Cases

5.2.1 Prior Distributions

5.2.2 Observation Operators

5.2.3 The Additive Noise Models

5.2.4 Test Problems

5.3 Sample-Based Error Analysis

5.4 Truncated Singular Value Decomposition

5.5 Conjugate Gradient Iteration

5.6 Tikhonov Regularization

5.6.1 Prior Structure and Regularization Level

5.6.2 Misspeeifieation of the Gaussian Observation Error Model

5.6.3 Additive Cauchy Errors

5.7 Discretization and Prior Models

5.8 Statistical Model Reduction, Approximation Errors and Inverse Crimes

5.8.1 An Example: Full Angle Tomography and CGNE...

……

6 Model problems

7 Case studies

A Linear algebra and functional analysis

B Basics on probability

References

Index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有