分享
 
 
 

有限元方法基础理论 第6版

有限元方法基础理论 第6版  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,自然科学,数学,计算数学,

作者: (英)监凯维奇著

出 版 社: 世界图书出版公司

出版时间: 2008-9-1字数:版次: 1页数: 733印刷时间: 2008/09/01开本: 24开印次: 1纸张: 胶版纸I S B N : 9787506292542包装: 平装内容简介

This book is dedicated to our wives Helen, Mary Lou and Song and our families for their support and patience during the preparation of this book, and also to all of our students and colleagues who over the years have contributed to our knowledge of the finite element method. In particular we would like to mention Professor Eugenio Oniate and his group at CIMNE for their help, encouragement and support during the preparation process.

目录

Preface

1 The standard discrete system and origins of the finite element method

1.1 Introduction

1.2 The structural element and the structural system

1.3 Assembly and analysis of a structure

1.4 The boundary conditions

1.5 Electrical and fluid networks

1.6 The general pattern

1.7 The standard discrete system

1.8 Transformation of coordinates

1.9 Problems

2 A direct physical approach to problems in elasticity: plane stress

2.1 Introduction

2.2 Direct formulation of finite element characteristics

2.3 Generalization to the whole region - internal nodal force concept abandoned

2.4 Displacement approach as a minimization of total potential energy

2.5 Convergence criteria

2.6 Discretization error and convergence rate

2.7 Displacement functions with discontinuity between elements -non-conforming elements and the patch test

2.8 Finite element solution process

2.9 Numerical examples

2.10 Concluding remarks

2.11 Problems

3 Generalization of the finite element concepts. Galerkin-weighted residual and variational approaches

3.1 Introduction

3.2 Integral or 'weak' statements equivalent to the differential equations

3.3 Approximation to integral formulations: the weighted residual-Galerkin method

3.4 Vitual work as the 'weak form' of equilibrium equations for analysis of solids or fluids

3.5 Partial discretization

3.6 Convergence

3.7 What are 'variational principles' ?

3.8 'Natural' variational principles and their relation to governing differential equations

3.9 Establishment of natural variational principles for linear, self-adjoint, differentaal equations

3.10 Maximum, minimum, or a saddle point?

3.11 Constrained variational principles. Lagrange multipliers

3.12 Constrained variational principles. Penalty function and perturbed lagrangian methods

3.13 Least squares approximations

3.14 Concluding remarks - finite difference and boundary methods

3.15 Problems

4 Standard' and 'hierarchical' element shape functions: some general families of Co continuity

4.1 Introduction

4.2 Standard and hierarchical concepts

4.3 Rectangular elements - some preliminary considerations

4.4 Completeness of polynomials

4.5 Rectangular elements - Lagrange family

4.6 Rectangular dements - 'serendipity' family

4.7 Triangular element family

4.8 Line elements

4.9 Rectangular prisms - Lagrange family

4.10 Rectangular prisms - 'serendipity' family

4.11 Tetrahedral dements

4.12 Other simple three-dimensional elements

4.13 Hierarchic polynomials in one dimension

4.14 Two- and three-dimensional, hierarchical elements of the 'rectangle' or 'brick' type

4.15 Triangle and tetrahedron family

4.16 Improvement of conditioning with hierarchical forms

4.17 Global and local finite element approximation

4.18 Elimination of internal parameters before assembly - substructures

4.19 Concluding remarks

4.20 Problems

5 Mapped elements and numerical integration - 'infinite' and 'singularity elements'

5.1 Introduction

5.2 Use of 'shape functions' in the establishment of coordinate transformations

5.3 Geometrical conformity of elements

5.4 Variation of the unknown function within distorted, curvilinear elements. Continuity requirements

5.5 Evaluation of element matrices. Transformation in ε, η, ζ coordinates

5.6 Evaluation of element matrices. Transformation in area and volumecoordinates

5.7 Order of convergence for mapped elements

5.8 Shape functions by degeneration

5.9 Numerical integration - one dimensional

5.10 Numerical integration - rectangular (2D) or brick regions (3D)

5.11 Numerical integration - triangular or tetrahedral regions

5.12 Required order of numerical integration

5.13 Generation of finite element meshes by mapping. Blending functions

5.14 Infinite domains and infinite elements

5.15 Singular elements by mapping - use in fracture mechanics, etc.

5.16 Computational advantage of numerically integrated finite elements

5.17 Problems

6 Problems in linear elasticity

6.1 Introduction

6.2 Governing equations

6.3 Finite element approximation

6.4 Reporting of results: displacements, strains and stresses

6.5 Numerical examples

6.6 Problems

7 Field problems - heat conduction, electric and magnetic potential and fluid flow

7.1 Introduction

7.2 General quasi-harmonic equation

7.3 Finite element solution process

7.4 Partial discretization - transient problems

7.5 Numerical examples - an assessment of accuracy

7.6 Concluding remarks

7.7 Problems

8 Automatic mesh generation

8.1 Introduction

8.2 Two-dimensional mesh generation - advancing front method

8.3 Surface mesh generation

8.4 Three-dimensional mesh generation - Delaunay triangulation

8.5 Concluding remarks

8.6 Problems

9 The patch test, reduced integration, and non-conforming elements

9.1 Introduction

9.2 Convergence requirements

9.3 The simple patch test (tests A and B) - a necessary condition for convergence

9.4 Generalized patch test (test C) and the single-element test

9.5 The generality of a numerical patch test

9.6 Higher order patch tests

9.7 Application of the patch test to plane elasticity dements with 'standard' and 'reduced' quadrature

9.8 Application of the patch test to an incompatible element

9.9 Higher order patch test - assessment of robustness

9.10 Concluding remarks

9.11 Problems

10 Mixed formulation and constraints - complete field methods

10.1 Introduction

10.2 Discretization of mixed forms - some general remarks

10.3 Stability of mixed approximation. The patch test

10.4 Two-fidd mixed formulation in elasticity

10.5 Three-field mixed formulations in elasticity

10.6 Complementary forms with direct constraint

10.7 Concluding remarks - mixed formulation or a test of element 'robustness'

10.8 Problems

11 Incompressible problems, mixed methods and other procedures of solution

11.1 Introduction

11.2 Deviatoric stress and strain, pressure and volume change

11.3 Two-field incompressible elasticity (up form)

11.4 Three-field nearly incompressible elasticity (u-p-~o form)

11.5 Reduced and selective integration and its equivalence to penalized mixed problems

11.6 A simple iterative solution process for mixed problems: Uzawa method

11.7 Stabilized methods for some mixed elements failing the incompressibility patch test

11.8 Concluding remarks

11.9 Problems

12 Multidomain mixed approximations - domain decomposition and 'frame' methods

12.1 Introduction

12.2 Linking of two or more subdomains by Lagrange multipliers

12.3 Linking of two or more subdomains by perturbed lagrangian and penalty methods

12.4 Interface displacement 'frame'

12.5 Linking of boundary (or Trefftz)-type solution by the 'frame' of specified displacements

12.6 Subdomains with 'standard' elements and global functions

12.7 Concluding remarks

12.8 Problems

13 Errors, recovery processes and error estimates

13.1 Definition of errors

13.2 Superconvergence and optimal sampling points

13.3 Recovery of gradients and stresses

13.4 Superconvergent patch recovery -, SPR

13.5 Recovery by equilibration of patches - REP

13.6 Error estimates by recovery

13.7 Residual-based methods

13.8 Asymptotic behaviour and robustness of error estimators - the Babuska patch test

13.9 Bounds on quantities of interest

13.10 Which errors should concern us?

13.11 Problems

14 Adaptive finite element refinement

14.1 Introduction

14.2 Adaptive h-refinement

14.3 p-refinement and hp-refinement

14.4 Concluding remarks

14.5 Problems

15 Point-based and partition of unity approximations. Extended finite element methods

15.1 Introduction

15.2 Function approximation

15.3 Moving least squares approximations - restoration of continuity of approximation

15.4 Hierarchical enhancement of moving least squares expansions

15.5 Point collocation - finite point methods

15.6 Galerkin weighting and finite volume methods

15.7 Use of hierarchic and special functions based on standard finite elements satisfying the partition of unity requirement

15.8 Concluding remarks

15.9 Problems

16 The time dimension - semi-discretization of field and dynamic problems and analytical solution procedures

16.1 Introduction

16.2 Direct formulation of time-dependent problems with spatial finite element subdivision

16.3 General classification

16.4 Free response - eigenvalues for second-order problems and dynamic vibration

16.5 Free response - eigenvalues for first-order problems and heat conduction, etc.

16.6 Free response - damped dynamic eigenvalues

16.7 Forced periodic response

16.8 Transient response by analytical procedures

16.9 Symmetry and repeatability

16.10 Problems

17 The time dimension - discrete approximation in time

17.1 Introduction

17.2 Simple time-step algorithms for the first-order equation

17.3 General single-step algorithms for first- and second-order equations

17.4 Stability of general algorithms

17.5 Multistep recurrence algorithms

17.6 Some remarks on general performance of numerical algorithms

17.7 Time discontinuous Galerkin approximation

17.8 Concluding remarks

17.9 Problems

18 Coupled systems

18.1 Coupled problems - definition and classification

18.2 Fluid-structure interaction (Class I problems)

18.3 Soil-pore fluid interaction (Class II problems)

18.4 Partitioned single-phase systems - implicit--explicit partitions(Class I problems)

18.5 Staggered solution processes

18.6 Concluding remarks

19 Computer procedures for finite dement analysis

19.1 Introduction

19.2 Pre-processing module: mesh creation

19.3 Solution module

19.4 Post-processor module

19.5 User modules

Appendix A: Matrix algebra

Appendix B: Tensor-indicial notation in the approximation of elasticity problems

Appendix C: Solution of simultaneous linear algebraic equations

Appendix D: Some integration formulae for a triangle

Appendix E: Some integration formulae for a tetrahedron

Appendix F: Some vector algebra

Appendix G: Integration by parts in two or three dimensions (Green's theorem)

Appendix H: Solutions exact at nodes

Appendix I: Matrix diagonalization or lumping

Author index

Subject index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
>>返回首頁<<
 
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有