激光光谱学第3版
分類: 图书,工业技术,电子 通信,光电子技术、激光技术,
作者: (德)德姆特勒德(Demtroder,W.)著
出 版 社: 世界图书出版公司
出版时间: 2008-8-1字数:版次: 1页数: 987印刷时间: 2008/08/01开本: 24开印次: 1纸张: 胶版纸I S B N : 9787506291880包装: 精装内容简介
《激光光谱学》系统介绍了现代激光光谱学中的基本理论,方法和应用。《激光光谱学》选题丰富,阐述清楚深刻,注重实际应用,已经成为一本经典的激光光谱学研究生教材和参考用书。此次影印的是最新的第三版。在前两版的基础上,作者做了全面的修订和增补,介绍了激光光谱学最新的实验技术和理论进展,例如:外腔中的倍频,可调控的窄带紫外光源,更灵敏的检测技术,可调谐飞秒和分飞秒激光器(X光区域和阿秒范围),可控原子分子激发,相干物质波,还有更多在化学分析,医疗诊断和工程等方面的应用。适合从事激光光谱学研究的物理学家和化学物理学家以及众多的工程人员学习和参考。
《激光光谱学》特色:(1)内容非常丰富,涵盖了激光光谱学中众多分支,并附有全面的参考文献。(2)把重要的概念和公式用边框括起来,方便读者查阅。
读者对象:适用于物理,化学和材料专业的高年级本科生、研究生和相关专业的科研人员和工程师。
目次:简介;光的吸收和发散;非线性光谱;激光拉曼光谱;束中的激光光谱;光泵谱和双共振技术;时间分辨的激光光谱;相干光谱;碰撞过程中的激光光谱;激光光谱新进展;激光光谱的应用;参考文献;主题索引。
作者简介
德姆特勒德,德国凯泽斯劳滕大学教授,著名激光光谱学专家。创建了高分辨率激光光谱技术及其在原子分子理学中的应用这一研究领域。1995年获得由德国物理学会和物理研究所颁发的马克思—博恩奖。2000年获得洪堡基金会颁发的海森堡奖。
目录
1.Introduction
2.Absorption and Emission of Light
2.1Cavity Modes
2.2Thermal Radiation and Planck's Law
2.3Absorption, Induced, and Spontaneous Emission
2.4Basic Photometric Quantities
2.5Polarization of Light
2.6Absorption and Emission Spectra
2.7Transition Probabilities
2.8Coherence Properties of Radiation Fields
2.9Coherence of Atomic Systems
Problems
3.Widths and Profiles of Spectral Lines
3.1Natural Linewidth
3.2Doppler Width
3.3Collisional Broadening of Spectral Lines
3.4Transit-Time Broadening
3.5Homogeneous and Inhomogeneous Line Broadening
3.6Saturation and Power Broadening
3.7Spectral Line Profiles in Liquids and Solids
Problems
4.Spectroscopic Instrumentation
4.1Spectrographs and Monochromators
4.2Interferometers
4.3Comparison Between Spectrometers and Interferometers
4.4Accurate Wavelength Measurements
4.5Detection of Light
4.6Conclusions
Problems
5.Lasers as Spectroscopic Light Sources
5.1Fundamentals of Lasers
5.2Laser Resonators
5.3Spectral Characteristics of Laser Emission
5.4Experimental Realization of Single-Mode Lasers
5.5Controlled Wavelength Tuning of Single-Mode Lasers
5.6Linewidths of Single-Mode Lasers
5.7Tunable Lasers
5.8Nonlinear Optical Mixing Techniques
5.9Gaussian Beams
Problems
6.Doppler-Limited Absorption and Fluorescence Spectroscopy with Lasers
6.1Advantages of Lasers in Spectroscopy
6.2High-Sensitivity Methods of Absorption Spectroscopy
6.3Direct Determination of Absorbed Photons
6.4Ionization Spectroscopy
6.5Optogalvanic Spectroscopy
6.6Velocity-Modulation Spectroscopy
6.7Laser Magnetic Resonance and Stark Spectroscopy
6.8Laser-Induced Fluorescence
6.9Comparison Between the Different Methods
Problems
7.Nonlinear Spectroscopy
7.1Linear and Nonlinear Absorption
7.2Saturation of Inhomogeneous Line Profiles
7.3Saturation Spectroscopy
7.4Polarization Spectroscopy
7.5Multiphoton Spectroscopy
7.6Special Techniques of Nonlinear Spectroscopy
7.7Conclusion
Problems
8.Laser Raman Spectroscopy
8.1Basic Considerations
8.2Experimental Techniques of Linear Laser Saman Spectroscopy
8.3Nonlinear Raman Spectroscopy
8.4Special Techniques
8.5Applications of Laser Raman Spectroscopy
Problems
9.Laser Spectroscopy in Molecular Beams
9.1Reduction of Doppler Width
9.2Adiabatic Cooling in Supersonic Beams
9.3Formation and Spectroscopy of Clusters and Van der Waals Molecules in Cold Molecular Beams
9.4Nonlinear Spectroscopy in Molecular Beams
9.5Laser Spectroscopy in Fast Ion Beams
9.6Applications of FIBLAS
9.7Spectroscopy in Cold Ion Beams
9.8Combination of Molecular Beam Laser Spectroscopy and Mass Spectrometry
Problems
10.Optical Pumping and Double-Resonance Techniques
10.1Optical Pumping
10.2Optical-RF Double-Resonance Technique
10.3Optical-Microwave Double Resonance
10.4Optical-Optical Double Resonance
10.5Special Detection Schemes of Double-Resonance Spectroscopy
Problems
11.Time-Resolved Laser Spectroscopy
11.1Generation of Short Laser Pulses
11.2Measurement of Ultrashort Pulses
11.3Lifetime Measurement with Lasers
11.4Pump-and-Probe Technique
Problems
12.Coherent Spectroscopy
12.1Level-Crossing Spectroscopy
12.2Quantum-Beat Spectroscopy
12.3Excitation and Detection of Wave Packets in Atoms and Molecules
12.4Optical Pulse-Train Interference Spectroscopy
12.5Photon Echoes
12.6Optical Nutation and Free-Induction Decay
12.7Heterodyne Spectroscopy
12.8Correlation Spectroscopy
Problems
13.Laser Spectroscopy of Collision Processes
13.1High-Resolution Laser Spectroscopy of Collisional Line Broadening and Line Shifts
13.2Measurements of Inelastic Collision Cross Sections of Excited Atoms and Molecules
13.3Spectroscopic Techniques for Measuring Collision-Induced Transitions in the Electronic Ground State of Molecules
13.4Spectroscopy of Reactive Collisions
13.5Spectroscopic Determination of Differential Collision Cross Sections in Crossed Molecular Beams
13.6Photon-Assisted Collisional Energy Transfer
13.7Photoassociation Spectroscopy of Colliding Atoms
Problems
14.New Developments in Laser Spectroscopy
14.1Optical Cooling and Trapping of Atoms
14.2Spectroscopy of Single Ions
14.3Optical Ramsey-Fringes
14.4Atom Interferometry
14.5The One-Atom Maser
14.6Spectral Resolution Within the Natural Linewidth
14.7Absolute optical Frequency Measurement and Optical Frequency Standards
14.8Squeezing
15.Applications of Laser Spectroscopy
15.1Applications in Chemistry
15.2Environmental Research with Lasers
15.3Applications to Technical Problems
15.4Applications in Biology
15.5Medical Applications of Laser Spectroscopy
15.6Concluding Remarks
References
Subject Index