分享
 
 
 

数学分析(原书第2版)(华章数学译丛)

数学分析(原书第2版)(华章数学译丛)  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,科学与自然,数学,数学分析,
  品牌: 阿波斯托尔

基本信息·出版社:机械工业出版社

·页码:400 页

·出版日期:2006年

·ISBN:7111180143

·条形码:9787111180142

·包装版本:2006-03-01

·装帧:平装

·开本:16开

·丛书名:华章数学译丛

产品信息有问题吗?请帮我们更新产品信息。

内容简介《数学分析》(原书第2版)是美国著名的数学分析教材,涵盖了初等微积分以及实变函数论和复变函数论等内容,涉及现代分析的最新进展。书中包含大量覆盖各个方面、各级难度的习题,通过习题的训练,可以培养学生的运算技能和对数学问题的思维能力。《数学分析》(原书第2版)条理清晰,内容精练,言简意赅,可作为高等院校数学与应用数学、信息与计算科学等专业学生的教材,同时也可作为数学工作者和科技人员的参考书。

作者简介Tom M. Apostol 是加州理工学院数学系荣誉教授。他于1946年在华盛顿大学西雅图分校获得数学硕士学位,于1948年在加州大学伯克利分校获得数学博士学位。他的著述很多,除本书外,还著有《Calculus, One-Variable Calculus with an Introduction to Linear Algebra》、《Calculus, Multi-Variable Calculus and Linear Algebra with Applications》等。

编辑推荐《数学分析》(原书第2版)是一部现代数学名著。自20世纪70年代面世以来,一直受到西方学术界、教育界的广泛推崇,被许多知名大学指定为教材。

相比于同类书籍,它的特点在于:选取的论据更适于教学使用。论证详尽,可读性更强。习题丰富,覆盖各个方面、各级难度。可根据教学需要选用不同章节。

目录

第1章实数系与复数系

1.1引言

1.2域公理

1.3序公理

1.4实数的几何表示

1.5区间

1.6整数

1.7整数的唯一因数分解定理

1.8有理数

1.9无理数

1.10上界,最大元,最小上界(上确界)

1.11完全公理

1.12上确界的某些性质

1.13从完全公理推演出的整数性质

1.14实数系的阿基米德性质

1.15能用有限小数表示的有理数

1.16用有限小数逼近实数

1.17用无限小数表示实数

1.18绝对值与三角不等式

1.19柯西施瓦茨不等式

1.20正负无穷和扩充的实数系R*

1.21复数

1.22复数的几何表示

1.23虚数单位

1.24复数的绝对值

1.25复数排序的不可能性

1.26复指数

1.27复指数的进一步性质

1.28复数的辐角

1.29复数的整数幂和方根

1.30复对数

1.31复幂

1.32复正弦和复余弦

1.33无穷远点与扩充的复平面C*

练习

进一步参考文献

第2章集合论的一些基本概念

2.1引言

2.2记号

2.3序偶

2.4两个集合的笛卡儿积

2.5关系与函数

2.6关于函数的进一步的术语

2.711函数及其反函数

2.8复合函数

2.9序列

2.10相似(对等)集合

2.11有限集与无限集

2.12可数集与不可数集

2.13实数系的不可数性

2.14集合代数

2.15可数集的可数族

练习

进一步参考文献

第3章点集拓扑初步

3.1引言

3.2欧氏空间Rn

3.3Rn中的开球与开集

3.4R1中开集的结构

3.5闭集

3.6附贴点,聚点

3.7闭集与附贴点

3.8波尔查诺魏尔斯特拉斯定理

3.9康托尔交定理

3.10林德勒夫覆盖定理

3.11海涅博雷尔覆盖定理

3.12Rn中的紧性

3.13度量空间

3.14度量空间中的点集拓扑

3.15度量空间的紧子集

3.16集合的边界

练习

进一步参考文献

第4章极限与连续性

4.1引言

4.2度量空间中的收敛序列

4.3柯西序列

4.4完备度量空间

4.5函数的极限

4.6复值函数的极限

4.7向量值函数的极限

4.8连续函数

4.9复合函数的连续性

4.10连续复值函数和连续向量值函数

4.11连续函数的例子

4.12连续性与开集或闭集的逆象

4.13紧集上的连续函数

4.14拓扑映射(同胚)

4.15波尔查诺定理

4.16连通性

4.17度量空间的分支

4.18弧连通性

4.19一致连续性

4.20一致连续性与紧集

4.21压缩的不动点定理

4.22实值函数的间断点

4.23单调函数

练习

进一步参考文献

第5章导数

5.1引言

5.2导数的定义

5.3导数与连续性

5.4导数代数

5.5链式法则

5.6单侧导数和无穷导数

5.7具有非零导数的函数

5.8零导数与局部极值

5.9罗尔定理

5.10微分中值定理

5.11导函数的介值定理

5.12带余项的泰勒公式

5.13向量值函数的导数

5.14偏导数

5.15复变函数的微分

5.16柯西黎曼方程

练习

进一步参考文献

第6章有界变差函数与可求长曲线

6.1引言

6.2单调函数的性质

6.3有界变差函数

6.4全变差

6.5全变差的可加性

6.6在[a,x]上作为x的函数的全变差

6.7有界变差函数表示为递增函数之差

6.8有界变差连续函数

6.9曲线与路

6.10可求长的路与弧长

6.11弧长的可加性及连续性性质

6.12路的等价性,参数变换

练习

进一步参考文献

第7章黎曼斯蒂尔切斯积分

7.1引言

7.2记号

7.3黎曼斯蒂尔切斯积分的定义

7.4线性性质

7.5分部积分法

7.6黎曼斯蒂尔切斯积分中的变量替换

7.7化为黎曼积分

7.8阶梯函数作为积分函数

7.9黎曼斯蒂尔切斯积分化为有限和

7.10欧拉求和公式

7.11单调递增的积分函数,上积分与下积分

7.12上积分及下积分的可加性与线性性质

7.13黎曼条件

7.14比较定理

7.15有界变差的积分函数

7.16黎曼斯蒂尔切斯积分存在的充分条件

7.17黎曼斯蒂尔切斯积分存在的必要条件

7.18黎曼斯蒂尔切斯积分的中值定理

7.19积分作为区间的函数

7.20积分学第二基本定理

7.21黎曼积分的变量替换

7.22黎曼积分第二中值定理

7.23依赖于一个参数的黎曼斯蒂尔切斯积分

7.24积分号下的微分法

7.25交换积分次序

7.26黎曼积分存在性的勒贝格准则

7.27复值黎曼斯蒂尔切斯积分

练习

进一步参考文献

第8章无穷级数与无穷乘积

8.1引言

8.2收敛的复数序列与发散的复数序列

8.3实值序列的上极限与下极限

8.4单调的实数序列

8.5无穷级数

8.6插入括号和去掉括号

8.7交错级数

8.8绝对收敛与条件收敛

8.9复级数的实部与虚部

8.10正项级数收敛性的检验法

8.11几何级数

8.12积分检验法

8.13大O记号和小o记号

8.14比值检验法和根检验法

8.15狄利克雷检验法和阿贝尔检验法

8.16几何级数∑zn在单位圆|z|=1上的部分和

8.17级数的重排

8.18关于条件收敛级数的黎曼定理

8.19子级数

8.20二重序列

8.21二重级数

8.22二重级数的重排定理

8.23累次级数相等的一个充分条件

8.24级数的乘法

8.25切萨罗可求和性

8.26无穷乘积

8.27对于黎曼ζ函数的欧拉乘积

练习

进一步参考文献

第9章函数序列

9.1函数序列的点态收敛性

9.2实值函数序列的例子

9.3一致收敛的定义

9.4一致收敛与连续性

9.5一致收敛的柯西条件

9.6无穷函数级数的一致收敛

9.7一条填满空间的曲线

9.8一致收敛与黎曼斯蒂尔切斯积分

9.9可以被逐项积分的非一致收敛序列

9.10一致收敛与微分

9.11级数一致收敛的充分条件

9.12一致收敛与二重序列

9.13平均收敛

9.14幂级数

9.15幂级数的乘法

9.16代入定理

9.17幂级数的倒数

9.18实的幂级数

9.19由函数生成的泰勒级数

9.20伯恩斯坦定理

9.21二项式级数

9.22阿贝尔极限定理

9.23陶伯定理

练习

进一步参考文献

第10章勒贝格积分

10.1引言

10.2阶梯函数的积分

10.3单调的阶梯函数序列

10.4上函数及其积分

10.5黎曼可积函数作为上函数的例子

10.6一般区间上的勒贝格可积函数类

10.7勒贝格积分的基本性质

10.8勒贝格积分和零测度集

10.9莱维单调收敛定理

10.10勒贝格控制收敛定理

10.11勒贝格控制收敛定理的应用

10.12无界区间上的勒贝格积分作为有界区间上的积分的极限

10.13反常黎曼积分

10.14可测函数

10.15由勒贝格积分定义的函数的连续性

10.16积分号下的微分法

10.17交换积分次序

10.18实线上的可测集

10.19在R的任意子集上的勒贝格积分

10.20复值函数的勒贝格积分

10.21内积与范数

10.22平方可积函数集合L2(I)

10.23集合L2(I)作为一个半度量空间

10.24关于L2(I)内的函数级数的一个收敛定理

10.25里斯费希尔定理

练习

进一步参考文献

第11章傅里叶级数与傅里叶积分

11.1引言

11.2正交函数系

11.3最佳逼近定理

11.4函数相对于一个规范正交系的傅里叶级数

11.5傅里叶系数的性质

11.6里斯费希尔定理

11.7三角级数的收敛性与表示问题

11.8黎曼勒贝格引理

11.9狄利克雷积分

11.10傅里叶级数部分和的积分表示

11.11黎曼局部化定理

11.12傅里叶级数在一个特定的点上收敛的充分条件

11.13傅里叶级数的切萨罗可求和性

11.14费耶定理的推论

11.15魏尔斯特拉斯逼近定理

11.16其他形式的傅里叶级数

11.17傅里叶积分定理

11.18指数形式的傅里叶积分定理

11.19积分变换

11.20卷积

11.21对于傅里叶变换的卷积定理

11.22泊松求和公式

练习

进一步参考文献

第12章多元微分学

12.1引言

12.2方向导数

12.3方向导数与连续性

12.4全导数

12.5全导数通过偏导数来表示

12.6对复值函数的一个应用

12.7线性函数的矩阵

12.8雅可比矩阵

12.9链式法则

12.10链式法则的矩阵形式

12.11用于可微函数的中值定理

12.12可微的一个充分条件

12.13混合偏导数相等的一个充分条件…

12.14用于从Rn到R1的函数的泰勒公式

练习

进一步参考文献

第13章隐函数与极值问题

13.1引言

13.2雅可比行列式不取零值的函数

13.3反函数定理

13.4隐函数定理

13.5一元实值函数的极值

13.6多元实值函数的极值

13.7带边条件的极值问题

练习

进一步参考文献

第14章多重黎曼积分

14.1引言

14.2Rn内有界区间的测度

14.3在Rn内的紧区间上定义的有界函数的黎曼积分

14.4零测度集与多重黎曼积分存在性的勒贝格准则

14.5多重积分通过累次积分求值

14.6Rn内的若尔当可测集

14.7若尔当可测集上的多重积分

14.8若尔当容度表示为黎曼积分

14.9黎曼积分的可加性

14.10多重积分的中值定理

练习

进一步参考文献

第15章多重勒贝格积分

15.1引言

15.2阶梯函数及其积分

15.3上函数与勒贝格可积函数

15.4Rn内的可测函数与可测集

15.5关于阶梯函数的二重积分的富比尼归约定理

15.6零测度集的某些性质

15.7对于二重积分的富比尼归约定理

15.8可积性的托内利霍布森检验法

15.9坐标变换

15.10多重积分的变换公式

15.11对于线性坐标变换的变换公式的证明

15.12对于紧立方体特征函数的变换公式的证明

15.13变换公式证明的完成

练习

进一步参考文献

第16章柯西定理与留数计算

16.1解析函数

16.2复平面内的路与曲线

16.3围道积分

16.4沿圆形路的积分作为半径的函数

16.5对于圆的柯西积分定理

16.6同伦曲线

16.7围道积分在同伦下的不变性

16.8柯西积分定理的一般形式

16.9柯西积分公式

16.10回路关于一点的卷绕数

16.11卷绕数为零的点集的无界性

16.12用围道积分定义的解析函数

16.13解析函数的幂级数展开

16.14柯西不等式与刘维尔定理

16.15解析函数零点的孤立性

16.16解析函数的恒等定理

16.17解析函数的最大模和最小模

16.18开映射定理

16.19圆环内解析函数的洛朗展开

16.20孤立奇点

16.21函数在孤立奇点处的留数

16.22柯西留数定理

16.23区域内零点与极点的个数

16.24用留数的方法求实值积分的值

16.25用留数计算的方法求高斯和的值

16.26留数定理对于拉普拉斯变换反演公式的应用

16.27共形映射

练习

进一步参考文献

特殊符号索引

索引

……[看更多目录]

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
>>返回首頁<<
 
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有