概率论基础教程(英文版·第8版)
分類: 图书,自然科学,数学,概率论与数理统计,
作者: (美)罗斯 著
出 版 社: 人民邮电出版社
出版时间: 2009-7-1字数:版次: 1页数: 530印刷时间:开本: 16开印次: 1纸张:I S B N : 9787115209542包装: 平装编辑推荐
“这是一本优秀的概率论基础教材,是我所见到最好的一本。”
—— Nhu Nguyen(新墨西哥州立大学)
“例子是如此地丰富和实用,写作风格清新、流畅,解答详细、准确,是一本很好读的教材……”。
—— Robert Bauer(伊利诺伊大学厄巴纳-尚佩恩分校)
内容简介
本书是世界各国高校广泛采用的概率论教材,通过大量的例子讲述了概率论的基础知识,主要内容有组合分析、概率论公理化、条件概率和独立性、离散和连续型随机变量、随机变量的联合分布、期望的性质、极限定理等.本书附有大量的练习,分为习题、理论习题和自检习题三大类,其中自检习题部分还给出全部解答。
本书适用于大专院校数学、统计、工程和相关专业(包括计算科学、生物、社会科学和管理科学)的学生阅读,也可供概率应用工作者参考。
作者简介
罗斯,Sheldon M. Ross国际知名概率与统计学家,南加州大学工业工程与运筹系系主任。毕业于斯坦福大学统计系,曾在加州大学伯克利分校任教多年。研究领域包括:随机模型.仿真模拟、统计分析、金融数学等:Ross教授著述颇丰,他的多种畅销数学和统计教材均产生了世界性的影响,如Introduction to Probability Models(《应用随机过程:概率模型导论》),A First Course in Probability(《概率论墓础教程》)等(均由人民邮电出版社出版)
目录
1Combinatorial Analysis
1.1Introduction
1.2The Basic Principle of Counting
1.3Permutations
1.4Combinations
1.5Multinomial Coefficients
1.6The Number of Integer Solutions of Equations
Summary
Problems
Theoretical Exercises
Self-Test Problems and Exercises
2Axioms of Probability
2.1Introduction
2.2Sample Space and Events
2.3Axioms of Probability
2.4Some Simple Propositions
2.5Sample Spaces Having Equally Likely Outcomes
2.6Probability as a Continuous Set Function
2.7Probability as a Measure of Belief
Summary
Problems
Theoretical Exercises
Self-Test Problems and Exercises
3Conditional Probability and Independence
3.1Introduction
3.2Conditional Probabilities
3.3Bayes' Formula
3.4Independent Events
3.5P(.|F) Is a Probability
Summary
Problems
Theoretical Exercises
Self-Test Problems and Exercises
4Random Variables
4.1Random Variables
4.2Discrete Random Variables
4.3Expected Value
4.4Expectation of a Function of a Random Variable
4.5Variance
4.6The Bernoulli and Binomial Random Variables
4.6.1Properties of Binomial Random Variables
4.6.2Computing the Binomial Distribution Function
4.7 ThePoisson Random Variable
4.7.1Computing the Poisson Distribution Function
4.8Other Discrete Probability Distributions
4.8.1The Geometric Random Variable
4.8.2The Negative Binomial Random Variable
4.8.3The Hypergeometric Random Variable
4.8.4The Zeta (or Zipf) Distribution
4.9Properties of the Cumulative Distribution Function
Summary
Problems
Theoretical Exercises
Self-Test Problems and Exercises
5Continuous Random Variables
5.1Introduction
5.2Expectation and Variance of Continuous Random Variables
5.3The Uniform Random Variable
5.4Normal Random Variables
5.4.1The Normal Approximation to the Binomial Distribution
5.5Exponential Random Variables
5.5.1Hazard Rate Functions
5.6Other Continuous Distributions
5.6.1The Gamma Distribution
5.6.2The Weibull Distribution
5.6.3The Cauchy Distribution
5.6.4The Beta Distribution
5.7The Distribution of a Function of a Random Variable
Summary
Problems
Theoretical Exercises
Self-Test Problems and Exercises
6Jointly Distributed Random Variables
6.1Joint Distribution Functions
6.2Independent Random Variables
6.3Sums of Independent Random Variables
6.4Conditional Distributions: Discrete Case
6.5Conditional Distributions: Continuous Case
6.6Order Statistics
6.7Joint Probability Distribution of Functions of Random Variables
6.8Exchangeable Random Variables
Summary
Problems
Theoretical Exercises
Self-Test Problems and Exercises
7Properties of Expectation