证明1的过程有错,虽然结果还是必然成立,但是还是改一下~
据题意,设B的长和宽为x和y,A的长宽分别为a、b,得方程组:
①x + y = n ( a + b )
②x y = a b n
由①得:③y = a n + b n – x
将③带入②得:
x ( a n + b n – x ) = a b n
④x2 – a n x – b n x + a b n = 0
设在④中Δ<0,则可得:
[ - ( a + b ) n ]2 – 4 * 1 * a b n < 0
a2 n2 + 2 a b n2 + b2 n2 – 4 a b n < 0
a2 n2 + 2 a b n2 + b2 n2 < 4 a b n
a2 n2 + b2 n2 < 4 a b n – 2 a b n2
( a2 + b2 ) n2 < 2 a b n ( 2 – n)
n ( a + b )2 – 2 a b n < 4 a b – 2 a b n
( a + b )2 n < 4 a b
∵( a + b )2 > 4 a b
n≥1
∴( a + b )2 n > 4 a b
与( a + b )2 n < 4 a b矛盾
∴Δ≥0,即当n≥1时,可以得到一个矩形B的周长和面积均为给定矩形A的n倍