分享
 
 
 

RFC2875 - Diffie-Hellman Proof-of-Possession Algorithms

王朝other·作者佚名  2008-05-31
窄屏简体版  字體: |||超大  

Network Working Group H. Prafullchandra

Request for Comments: 2875 Critical Path Inc

Category: Standards Track J. Schaad

July 2000

Diffie-Hellman Proof-of-Possession Algorithms

Status of this Memo

This document specifies an Internet standards track protocol for the

Internet community, and requests discussion and suggestions for

improvements. Please refer to the current edition of the "Internet

Official Protocol Standards" (STD 1) for the standardization state

and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

This document describes two methods for prodUCing an integrity check

value from a Diffie-Hellman key pair. This behavior is needed for

such operations as creating the signature of a PKCS #10 certification

request. These algorithms are designed to provide a proof-of-

possession rather than general purpose signing.

1. Introduction

PKCS #10 [RFC2314] defines a syntax for certification requests. It

assumes that the public key being requested for certification

corresponds to an algorithm that is capable of signing/encrypting.

Diffie-Hellman (DH) is a key agreement algorithm and as such cannot

be directly used for signing or encryption.

This document describes two new proof-of-possession algorithms using

the Diffie-Hellman key agreement process to provide a shared secret

as the basis of an integrity check value. In the first algorithm,

the value is constructed for a specific recipient/verifier by using a

public key of that verifier. In the second algorithm, the value is

constructed for arbitrary verifiers.

2. Terminology

The following definitions will be used in this document

DH certificate = a certificate whose SubjectPublicKey is a DH public

value and is signed with any signature algorithm (e.g. RSA or DSA).

3. Static DH Proof-of-Possession Process

The steps for creating a DH POP are:

1. An entity (E) chooses the group parameters for a DH key

agreement.

This is done simply by selecting the group parameters from a

certificate for the recipient of the POP process.

A certificate with the correct group parameters has to be

available. Let these common DH parameters be g and p; and let

this DH key-pair be known as the Recipient key pair (Rpub and

Rpriv).

Rpub = g^x mod p (where x=Rpriv, the private DH value and

^ denotes eXPonentiation)

2. The entity generates a DH public/private key-pair using the

parameters from step 1.

For an entity E:

Epriv = DH private value = y

Epub = DH public value = g^y mod p

3. The POP computation process will then consist of:

a) The value to be signed is oBTained. (For a RFC2314 object, the

value is the DER encoded certificationRequestInfo field

represented as an octet string.) This will be the `text'

referred to in [RFC2104], the data to which HMAC-SHA1 is

applied.

b) A shared DH secret is computed, as follows,

shared secret = ZZ = g^xy mod p

[This is done by the entity E as Rpub^y and by the Recipient

as Epub^x, where Rpub is retrieved from the Recipient's DH

certificate (or is the one that was locally generated by the

Entity) and Epub is retrieved from the actual certification

request.]

c) A temporary key K is derived from the shared secret ZZ as

follows:

K = SHA1(LeadingInfo ZZ TrailingInfo),

where "" means concatenation.

LeadingInfo ::= Subject Distinguished Name from certificate

TrailingInfo ::= Issuer Distinguished Name from certificate

d) Compute HMAC-SHA1 over the data `text' as per [RFC2104] as:

SHA1(K XOR opad, SHA1(K XOR ipad, text))

where,

opad (outer pad) = the byte 0x36 repeated 64 times and

ipad (inner pad) = the byte 0x5C repeated 64 times.

Namely,

(1) Append zeros to the end of K to create a 64 byte string

(e.g., if K is of length 16 bytes it will be appended

with 48 zero bytes 0x00).

(2) XOR (bitwise exclusive-OR) the 64 byte string computed

in step (1) with ipad.

(3) Append the data stream `text' to the 64 byte string

resulting from step (2).

(4) Apply SHA1 to the stream generated in step (3).

(5) XOR (bitwise exclusive-OR) the 64 byte string computed

in step (1) with opad.

(6) Append the SHA1 result from step (4) to the 64 byte

string resulting from step (5).

(7) Apply SHA1 to the stream generated in step (6) and

output the result.

Sample code is also provided in [RFC2104].

e) The output of (d) is encoded as a BIT STRING (the Signature

value).

The POP verification process requires the Recipient to carry out

steps (a) through (d) and then simply compare the result of step (d)

with what it received as the signature component. If they match then

the following can be concluded:

a) The Entity possesses the private key corresponding to the

public key in the certification request because it needed the

private key to calculate the shared secret; and

b) Only the Recipient that the entity sent the request to could

actually verify the request because they would require their

own private key to compute the same shared secret. In the case

where the recipient is a Certification Authority, this

protects the Entity from rogue CAs.

ASN Encoding

The ASN.1 structures associated with the static Diffie-Hellman POP

algorithm are:

id-dhPop-static-HMAC-SHA1 OBJECT IDENTIFIER ::= { id-pkix

id-alg(6) 3}

DhPopStatic ::= SEQUENCE {

issuerAndSerial IssuerAndSerialNumber OPTIONAL,

hashValue MessageDigest

}

issuerAndSerial is the issuer name and serial number of the

certificate from which the public key was obtained. The

issuerAndSerial field is omitted if the public key did not come

from a certificate.

hashValue contains the result of the SHA-1 HMAC operation in step

3d.

DhPopStatic is encoded as a BIT STRING and is the signature value

(i.e. encodes the above sequence instead of the raw output from 3d).

4. Discrete Logarithm Signature

The use of a single set of parameters for an entire public key

infrastructure allows all keys in the group to be attacked together.

For this reason we need to create a proof of possession for Diffie-

Hellman keys that does not require the use of a common set of

parameters.

This POP is based on the Digital Signature Algorithm, but we have

removed the restrictions imposed by the [FIPS-186] standard. The use

of this method does impose some additional restrictions on the set of

keys that may be used, however if the key generation algorithm

documented in [DH-X9.42] is used the required restrictions are met.

The additional restrictions are the requirement for the existence of

a q parameter. Adding the q parameter is generally accepted as a good

practice as it allows for checking of small group attacks.

The following definitions are used in the rest of this section:

p is a large prime

g = h(p-1)/q mod p ,

where h is any integer 1 < h < p-1 such that h(p-1) mod q > 1

(g has order q mod p)

q is a large prime

j is a large integer such that p = qj + 1

x is a randomly or pseudo-randomly generated integer with

1 < x < q

y = g^x mod p

Note: These definitions match the ones in [DH-X9.42].

4.1 Expanding the Digest Value

Besides the addition of a q parameter, [FIPS-186] also imposes size

restrictions on the parameters. The length of q must be 160-bits

(matching output of the SHA-1 digest algorithm) and length of p must

be 1024-bits. The size restriction on p is eliminated in this

document, but the size restriction on q is replaced with the

requirement that q must be at least 160-bits. (The size restriction

on q is identical with that in [DH-X9.42].)

Given that there is not a random length-hashing algorithm, a hash

value of the message will need to be derived such that the hash is in

the range from 0 to q-1. If the length of q is greater than 160-bits

then a method must be provided to expand the hash length.

The method for expanding the digest value used in this section does

not add any additional security beyond the 160-bits provided by SHA-

1. The value being signed is increased mainly to enhance the

difficulty of reversing the signature process.

This algorithm produces m the value to be signed.

Let L = the size of q (i.e. 2^L <= q < 2^(L+1)). Let M be the

original message to be signed.

1. Compute d = SHA-1(M), the SHA-1 digest of the original message.

2. If L == 160 then m = d.

3. If L > 160 then follow steps (a) through (d) below.

a) Set n = L / 160, where / represents integer division,

consequently, if L = 200, n = 1.

b) Set m = d, the initial computed digest value.

c) For i = 0 to n - 1

m = m SHA(m), where "" means concatenation.

d) m = LEFTMOST(m, L-1), where LEFTMOST returns the L-1 left most

bits of m.

Thus the final result of the process meets the criteria that 0 <= m <

q.

4.2 Signature Computation Algorithm

The signature algorithm produces the pair of values (r, s), which is

the signature. The signature is computed as follows:

Given m, the value to be signed, as well as the parameters defined

earlier in section 5.

1. Generate a random or pseudorandom integer k, such that 0 < k^-1 <

q.

2. Compute r = (g^k mod p) mod q.

3. If r is zero, repeat from step 1.

4. Compute s = (k^-1 (m + xr)) mod q.

5. If s is zero, repeat from step 1.

4.3 Signature Verification Algorithm

The signature verification process is far more complicated than is

normal for the Digital Signature Algorithm, as some assumptions about

the validity of parameters cannot be taken for granted.

Given a message m to be validated, the signature value pair (r, s)

and the parameters for the key.

1. Perform a strong verification that p is a prime number.

2. Perform a strong verification that q is a prime number.

3. Verify that q is a factor of p-1, if any of the above checks fail

then the signature cannot be verified and must be considered a

failure.

4. Verify that r and s are in the range [1, q-1].

5. Compute w = (s^-1) mod q.

6. Compute u1 = m*w mod q.

7. Compute u2 = r*w mod q.

8. Compute v = ((g^u1 * y^u2) mod p) mod q.

9. Compare v and r, if they are the same then the signature verified

correctly.

4.4 ASN Encoding

The signature is encoded using

id-alg-dhPOP OBJECT IDENTIFIER ::= {id-pkix id-alg(6) 4}

The parameters for id-alg-dhPOP are encoded as DomainParameters

(imported from [PROFILE]). The parameters may be omitted in the

signature, as they must exist in the associated key request.

The signature value pair r and s are encoded using Dss-Sig-Value

(imported from [PROFILE]).

5. Security Considerations

In the static DH POP algorithm, an appropriate value can be produced

by either party. Thus this algorithm only provides integrity and not

origination service. The Discrete Logarithm algorithm provides both

integrity checking and origination checking.

All the security in this system is provided by the secrecy of the

private keying material. If either sender or recipient private keys

are disclosed, all messages sent or received using that key are

compromised. Similarly, loss of the private key results in an

inability to read messages sent using that key.

Selection of parameters can be of paramount importance. In the

selection of parameters one must take into account the

community/group of entities that one wishes to be able to communicate

with. In choosing a set of parameters one must also be sure to avoid

small groups. [FIPS-186] Appendixes 2 and 3 contain information on

the selection of parameters. The practices outlined in this document

will lead to better selection of parameters.

6. References

[FIPS-186] Federal Information Processing Standards Publication

(FIPS PUB) 186, "Digital Signature Standard", 1994 May

19.

[RFC2314] Kaliski, B., "PKCS #10: Certification Request Syntax

v1.5", RFC2314, October 1997.

[RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-

Hashing for Message Authentication", RFC2104, February

1997.

[PROFILE] Housley, R., Ford, W., Polk, W., and D. Solo, "Internet

X.509 Public Key Infrastructure: Certificate and CRL

Profile", RFC2459, January 1999.

[DH-X9.42] Rescorla, E., "Diffie-Hellman Key Agreement Method", RFC

2631, June 1999.

7. Authors' Addresses

Hemma Prafullchandra

Critical Path Inc.

5150 El Camino Real, #A-32

Los Altos, CA 94022

Phone: (640) 694-6812

EMail: hemma@cp.net

Jim Schaad

EMail: jimsch@exmsft.com

Appendix A. ASN.1 Module

DH-Sign DEFINITIONS IMPLICIT TAGS ::=

BEGIN

--EXPORTS ALL

-- The types and values defined in this module are exported for use

-- in the other ASN.1 modules. Other applications may use them

-- for their own purposes.

IMPORTS

IssuerAndSerialNumber, MessageDigest

FROM CryptographicMessageSyntax { iso(1) member-body(2)

us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)

modules(0) cms(1) }

Dss-Sig-Value, DomainParameters

FROM PKIX1Explicit88 {iso(1) identified-organization(3) dod(6)

internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)

id-pkix1-explicit-88(1)};

id-dh-sig-hmac-sha1 OBJECT IDENTIFIER ::= {id-pkix id-alg(6) 3}

DhSigStatic ::= SEQUENCE {

IssuerAndSerial IssuerAndSerialNumber OPTIONAL,

hashValue MessageDigest

}

id-alg-dh-pop OBJECT IDENTIFIER ::= {id-pkix id-alg(6) 4}

END

Appendix B. Example of Static DH Proof-of-Possession

The following example follows the steps described earlier in section

3.

Step 1: Establishing common Diffie-Hellman parameters. Assume the

parameters are as in the DER encoded certificate. The certificate

contains a DH public key signed by a CA with a DSA signing key.

0 30 939: SEQUENCE {

4 30 872: SEQUENCE {

8 A0 3: [0] {

10 02 1: INTEGER 2

: }

13 02 6: INTEGER

: 00 DA 39 B6 E2 CB

21 30 11: SEQUENCE {

23 06 7: OBJECT IDENTIFIER dsaWithSha1 (1 2 840 10040 4 3)

32 05 0: NULL

: }

34 30 72: SEQUENCE {

36 31 11: SET {

38 30 9: SEQUENCE {

40 06 3: OBJECT IDENTIFIER countryName (2 5 4 6)

45 13 2: PrintableString 'US'

: }

: }

49 31 17: SET {

51 30 15: SEQUENCE {

53 06 3: OBJECT IDENTIFIER organizationName (2 5 4 10)

58 13 8: PrintableString 'XETI Inc'

: }

: }

68 31 16: SET {

70 30 14: SEQUENCE {

72 06 3: OBJECT IDENTIFIER organizationalUnitName (2 5 4

11)

77 13 7: PrintableString 'Testing'

: }

: }

86 31 20: SET {

88 30 18: SEQUENCE {

90 06 3: OBJECT IDENTIFIER commonName (2 5 4 3)

95 13 11: PrintableString 'Root DSA CA'

: }

: }

: }

108 30 30: SEQUENCE {

110 17 13: UTCTime '990914010557Z'

125 17 13: UTCTime '991113010557Z'

: }

140 30 70: SEQUENCE {

142 31 11: SET {

144 30 9: SEQUENCE {

146 06 3: OBJECT IDENTIFIER countryName (2 5 4 6)

151 13 2: PrintableString 'US'

: }

: }

155 31 17: SET {

157 30 15: SEQUENCE {

159 06 3: OBJECT IDENTIFIER organizationName (2 5 4 10)

164 13 8: PrintableString 'XETI Inc'

: }

: }

174 31 16: SET {

176 30 14: SEQUENCE {

178 06 3: OBJECT IDENTIFIER organizationalUnitName (2 5 4

11)

183 13 7: PrintableString 'Testing'

: }

: }

192 31 18: SET {

194 30 16: SEQUENCE {

196 06 3: OBJECT IDENTIFIER commonName (2 5 4 3)

201 13 9: PrintableString 'DH TestCA'

: }

: }

: }

212 30 577: SEQUENCE {

216 30 438: SEQUENCE {

220 06 7: OBJECT IDENTIFIER dhPublicKey (1 2 840 10046 2 1)

229 30 425: SEQUENCE {

233 02 129: INTEGER

: 00 94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7

: C5 A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82

: F5 D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21

: 51 63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68

: 5B 79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72

: 8A F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2

: 32 E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02

: D7 B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85

: 27

365 02 128: INTEGER

: 26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87 53 3F 90

: 06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5 0C 53 D4

: 64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6 1B 7F 57

: 86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31 7A 48 B6

: 4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69 D9 9B DE

: 47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33 51 C8 F1

: 39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31 15 26 48

: 95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E DA D1 CD

496 02 33: INTEGER

: 00 E8 72 FA 96 F0 11 40 F5 F2 DC FD 3B 5D 78 94

: B1 85 01 E5 69 37 21 F7 25 B9 BA 71 4A FC 60 30

: FB

531 02 97: INTEGER

: 00 A3 91 01 C0 A8 6E A4 4D A0 56 FC 6C FE 1F A7

: B0 CD 0F 94 87 0C 25 BE 97 76 8D EB E5 A4 09 5D

: AB 83 CD 80 0B 35 67 7F 0C 8E A7 31 98 32 85 39

: 40 9D 11 98 D8 DE B8 7F 86 9B AF 8D 67 3D B6 76

: B4 61 2F 21 E1 4B 0E 68 FF 53 3E 87 DD D8 71 56

: 68 47 DC F7 20 63 4B 3C 5F 78 71 83 E6 70 9E E2

: 92

630 30 26: SEQUENCE {

632 03 21: BIT STRING 0 unused bits

: 1C D5 3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E DB

: 09 E4 98 34

655 02 1: INTEGER 55

: }

: }

: }

658 03 132: BIT STRING 0 unused bits

: 02 81 80 5F CF 39 AD 62 CF 49 8E D1 CE 66 E2 B1

: E6 A7 01 4D 05 C2 77 C8 92 52 42 A9 05 A4 DB E0

: 46 79 50 A3 FC 99 3D 3D A6 9B A9 AD BC 62 1C 69

: B7 11 A1 C0 2A F1 85 28 F7 68 FE D6 8F 31 56 22

: 4D 0A 11 6E 72 3A 02 AF 0E 27 AA F9 ED CE 05 EF

: D8 59 92 C0 18 D7 69 6E BD 70 B6 21 D1 77 39 21

: E1 AF 7A 3A CF 20 0A B4 2C 69 5F CF 79 67 20 31

: 4D F2 C6 ED 23 BF C4 BB 1E D1 71 40 2C 07 D6 F0

: 8F C5 1A

: }

793 A3 85: [3] {

795 30 83: SEQUENCE {

797 30 29: SEQUENCE {

799 06 3: OBJECT IDENTIFIER subjectKeyIdentifier (2 5 29

14)

804 04 22: OCTET STRING

: 04 14 80 DF 59 88 BF EB 17 E1 AD 5E C6 40 A3 42

: E5 AC D3 B4 88 78

: }

828 30 34: SEQUENCE {

830 06 3: OBJECT IDENTIFIER authorityKeyIdentifier (2 5 29

35)

835 01 1: BOOLEAN TRUE

838 04 24: OCTET STRING

: 30 16 80 14 6A 23 37 55 B9 FD 81 EA E8 4E D3 C9

: B7 09 E5 7B 06 E3 68 AA

: }

864 30 14: SEQUENCE {

866 06 3: OBJECT IDENTIFIER keyUsage (2 5 29 15)

871 01 1: BOOLEAN TRUE

874 04 4: OCTET STRING

: 03 02 03 08

: }

: }

: }

: }

880 30 11: SEQUENCE {

882 06 7: OBJECT IDENTIFIER dsaWithSha1 (1 2 840 10040 4 3)

891 05 0: NULL

: }

893 03 48: BIT STRING 0 unused bits

: 30 2D 02 14 7C 6D D2 CA 1E 32 D1 30 2E 29 66 BC

: 06 8B 60 C7 61 16 3B CA 02 15 00 8A 18 DD C1 83

: 58 29 A2 8A 67 64 03 92 AB 02 CE 00 B5 94 6A

: }

Step 2. End Entity/User generates a Diffie-Hellman key-pair using the

parameters from the CA certificate.

EE DH public key: SunJCE Diffie-Hellman Public Key:

Y: 13 63 A1 85 04 8C 46 A8 88 EB F4 5E A8 93 74 AE

FD AE 9E 96 27 12 65 C4 4C 07 06 3E 18 FE 94 B8

A8 79 48 BD 2E 34 B6 47 CA 04 30 A1 EC 33 FD 1A

0B 2D 9E 50 C9 78 0F AE 6A EC B5 6B 6A BE B2 5C

DA B2 9F 78 2C B9 77 E2 79 2B 25 BF 2E 0B 59 4A

93 4B F8 B3 EC 81 34 AE 97 47 52 E0 A8 29 98 EC

D1 B0 CA 2B 6F 7A 8B DB 4E 8D A5 15 7E 7E AF 33

62 09 9E 0F 11 44 8C C1 8D A2 11 9E 53 EF B2 E8

EE DH private key:

X: 32 CC BD B4 B7 7C 44 26 BB 3C 83 42 6E 7D 1B 00

86 35 09 71 07 A0 A4 76 B8 DB 5F EC 00 CE 6F C3

Step 3. Compute K and the signature.

LeadingInfo: DER encoded Subject/Requestor DN (as in the generated

Certificate Signing Request)

30 4E 31 0B 30 09 06 03 55 04 06 13 02 55 53 31

11 30 0F 06 03 55 04 0A 13 08 58 45 54 49 20 49

6E 63 31 10 30 0E 06 03 55 04 0B 13 07 54 65 73

74 69 6E 67 31 1A 30 18 06 03 55 04 03 13 11 50

4B 49 58 20 45 78 61 6D 70 6C 65 20 55 73 65 72

TrailingInfo: DER encoded Issuer/Recipient DN (from the certificate

described in step 1)

30 46 31 0B 30 09 06 03 55 04 06 13 02 55 53 31

11 30 0F 06 03 55 04 0A 13 08 58 45 54 49 20 49

6E 63 31 10 30 0E 06 03 55 04 0B 13 07 54 65 73

74 69 6E 67 31 12 30 10 06 03 55 04 03 13 09 44

48 20 54 65 73 74 43 41

K:

F4 D7 BB 6C C7 2D 21 7F 1C 38 F7 DA 74 2D 51 AD

14 40 66 75

TBS: the 魌ext?for computing the SHA-1 HMAC.

30 82 02 98 02 01 00 30 4E 31 0B 30 09 06 03 55

04 06 13 02 55 53 31 11 30 0F 06 03 55 04 0A 13

08 58 45 54 49 20 49 6E 63 31 10 30 0E 06 03 55

04 0B 13 07 54 65 73 74 69 6E 67 31 1A 30 18 06

03 55 04 03 13 11 50 4B 49 58 20 45 78 61 6D 70

6C 65 20 55 73 65 72 30 82 02 41 30 82 01 B6 06

07 2A 86 48 CE 3E 02 01 30 82 01 A9 02 81 81 00

94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7 C5

A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82 F5

D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21 51

63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68 5B

79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72 8A

F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2 32

E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02 D7

B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85 27

02 81 80 26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87

53 3F 90 06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5

0C 53 D4 64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6

1B 7F 57 86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31

7A 48 B6 4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69

D9 9B DE 47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33

51 C8 F1 39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31

15 26 48 95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E

DA D1 CD 02 21 00 E8 72 FA 96 F0 11 40 F5 F2 DC

FD 3B 5D 78 94 B1 85 01 E5 69 37 21 F7 25 B9 BA

71 4A FC 60 30 FB 02 61 00 A3 91 01 C0 A8 6E A4

4D A0 56 FC 6C FE 1F A7 B0 CD 0F 94 87 0C 25 BE

97 76 8D EB E5 A4 09 5D AB 83 CD 80 0B 35 67 7F

0C 8E A7 31 98 32 85 39 40 9D 11 98 D8 DE B8 7F

86 9B AF 8D 67 3D B6 76 B4 61 2F 21 E1 4B 0E 68

FF 53 3E 87 DD D8 71 56 68 47 DC F7 20 63 4B 3C

5F 78 71 83 E6 70 9E E2 92 30 1A 03 15 00 1C D5

3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E DB 09 E4

98 34 02 01 37 03 81 84 00 02 81 80 13 63 A1 85

04 8C 46 A8 88 EB F4 5E A8 93 74 AE FD AE 9E 96

27 12 65 C4 4C 07 06 3E 18 FE 94 B8 A8 79 48 BD

2E 34 B6 47 CA 04 30 A1 EC 33 FD 1A 0B 2D 9E 50

C9 78 0F AE 6A EC B5 6B 6A BE B2 5C DA B2 9F 78

2C B9 77 E2 79 2B 25 BF 2E 0B 59 4A 93 4B F8 B3

EC 81 34 AE 97 47 52 E0 A8 29 98 EC D1 B0 CA 2B

6F 7A 8B DB 4E 8D A5 15 7E 7E AF 33 62 09 9E 0F

11 44 8C C1 8D A2 11 9E 53 EF B2 E8

Certification Request:

0 30 793: SEQUENCE {

4 30 664: SEQUENCE {

8 02 1: INTEGER 0

11 30 78: SEQUENCE {

13 31 11: SET {

15 30 9: SEQUENCE {

17 06 3: OBJECT IDENTIFIER countryName (2 5 4 6)

22 13 2: PrintableString 'US'

: }

: }

26 31 17: SET {

28 30 15: SEQUENCE {

30 06 3: OBJECT IDENTIFIER organizationName (2 5 4 10)

35 13 8: PrintableString 'XETI Inc'

: }

: }

45 31 16: SET {

47 30 14: SEQUENCE {

49 06 3: OBJECT IDENTIFIER organizationalUnitName (2 5 4

11)

54 13 7: PrintableString 'Testing'

: }

: }

63 31 26: SET {

65 30 24: SEQUENCE {

67 06 3: OBJECT IDENTIFIER commonName (2 5 4 3)

72 13 17: PrintableString 'PKIX Example User'

: }

: }

: }

91 30 577: SEQUENCE {

95 30 438: SEQUENCE {

99 06 7: OBJECT IDENTIFIER dhPublicKey (1 2 840 10046 2 1)

108 30 425: SEQUENCE {

112 02 129: INTEGER

: 00 94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7

: C5 A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82

: F5 D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21

: 51 63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68

: 5B 79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72

: 8A F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2

: 32 E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02

: D7 B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85

: 27

244 02 128: INTEGER

: 26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87 53 3F 90

: 06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5 0C 53 D4

: 64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6 1B 7F 57

: 86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31 7A 48 B6

: 4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69 D9 9B DE

: 47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33 51 C8 F1

: 39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31 15 26 48

: 95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E DA D1 CD

375 02 33: INTEGER

: 00 E8 72 FA 96 F0 11 40 F5 F2 DC FD 3B 5D 78 94

: B1 85 01 E5 69 37 21 F7 25 B9 BA 71 4A FC 60 30

: FB

410 02 97: INTEGER

: 00 A3 91 01 C0 A8 6E A4 4D A0 56 FC 6C FE 1F A7

: B0 CD 0F 94 87 0C 25 BE 97 76 8D EB E5 A4 09 5D

: AB 83 CD 80 0B 35 67 7F 0C 8E A7 31 98 32 85 39

: 40 9D 11 98 D8 DE B8 7F 86 9B AF 8D 67 3D B6 76

: B4 61 2F 21 E1 4B 0E 68 FF 53 3E 87 DD D8 71 56

: 68 47 DC F7 20 63 4B 3C 5F 78 71 83 E6 70 9E E2

: 92

509 30 26: SEQUENCE {

511 03 21: BIT STRING 0 unused bits

: 1C D5 3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E

DB

: 09 E4 98 34

534 02 1: INTEGER 55

: }

: }

: }

537 03 132: BIT STRING 0 unused bits

: 02 81 80 13 63 A1 85 04 8C 46 A8 88 EB F4 5E A8

: 93 74 AE FD AE 9E 96 27 12 65 C4 4C 07 06 3E 18

: FE 94 B8 A8 79 48 BD 2E 34 B6 47 CA 04 30 A1 EC

: 33 FD 1A 0B 2D 9E 50 C9 78 0F AE 6A EC B5 6B 6A

: BE B2 5C DA B2 9F 78 2C B9 77 E2 79 2B 25 BF 2E

: 0B 59 4A 93 4B F8 B3 EC 81 34 AE 97 47 52 E0 A8

: 29 98 EC D1 B0 CA 2B 6F 7A 8B DB 4E 8D A5 15 7E

: 7E AF 33 62 09 9E 0F 11 44 8C C1 8D A2 11 9E 53

: EF B2 E8

: }

: }

672 30 12: SEQUENCE {

674 06 8: OBJECT IDENTIFIER dh-sig-hmac-sha1 (1 3 6 1 5 5 7 6 3)

684 05 0: NULL

: }

686 03 109: BIT STRING 0 unused bits

: 30 6A 30 52 30 48 31 0B 30 09 06 03 55 04 06 13

: 02 55 53 31 11 30 0F 06 03 55 04 0A 13 08 58 45

: 54 49 20 49 6E 63 31 10 30 0E 06 03 55 04 0B 13

: 07 54 65 73 74 69 6E 67 31 14 30 12 06 03 55 04

: 03 13 0B 52 6F 6F 74 20 44 53 41 20 43 41 02 06

: 00 DA 39 B6 E2 CB 04 14 1B 17 AD 4E 65 86 1A 6C

: 7C 85 FA F7 95 DE 48 93 C5 9D C5 24

: }

Signature verification requires CA苨 private key, the CA certificate

and the generated Certification Request.

CA DH private key:

x: 3E 5D AD FD E5 F4 6B 1B 61 5E 18 F9 0B 84 74 a7

52 1E D6 92 BC 34 94 56 F3 0C BE DA 67 7A DD 7D

Appendix C. Example of Discrete Log Signature

Step 1. Generate a Diffie-Hellman Key with length of q being 256-

bits.

p:

94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7 C5

A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82 F5

D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21 51

63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68 5B

79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72 8A

F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2 32

E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02 D7

B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85 27

q:

E8 72 FA 96 F0 11 40 F5 F2 DC FD 3B 5D 78 94 B1

85 01 E5 69 37 21 F7 25 B9 BA 71 4A FC 60 30 FB

g:

26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87 53 3F 90

06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5 0C 53 D4

64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6 1B 7F 57

86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31 7A 48 B6

4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69 D9 9B DE

47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33 51 C8 F1

39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31 15 26 48

95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E DA D1 CD

j:

A3 91 01 C0 A8 6E A4 4D A0 56 FC 6C FE 1F A7 B0

CD 0F 94 87 0C 25 BE 97 76 8D EB E5 A4 09 5D AB

83 CD 80 0B 35 67 7F 0C 8E A7 31 98 32 85 39 40

9D 11 98 D8 DE B8 7F 86 9B AF 8D 67 3D B6 76 B4

61 2F 21 E1 4B 0E 68 FF 53 3E 87 DD D8 71 56 68

47 DC F7 20 63 4B 3C 5F 78 71 83 E6 70 9E E2 92

y:

5F CF 39 AD 62 CF 49 8E D1 CE 66 E2 B1 E6 A7 01

4D 05 C2 77 C8 92 52 42 A9 05 A4 DB E0 46 79 50

A3 FC 99 3D 3D A6 9B A9 AD BC 62 1C 69 B7 11 A1

C0 2A F1 85 28 F7 68 FE D6 8F 31 56 22 4D 0A 11

6E 72 3A 02 AF 0E 27 AA F9 ED CE 05 EF D8 59 92

C0 18 D7 69 6E BD 70 B6 21 D1 77 39 21 E1 AF 7A

3A CF 20 0A B4 2C 69 5F CF 79 67 20 31 4D F2 C6

ED 23 BF C4 BB 1E D1 71 40 2C 07 D6 F0 8F C5 1A

seed:

1C D5 3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E DB

09 E4 98 34

C:

00000037

x:

3E 5D AD FD E5 F4 6B 1B 61 5E 18 F9 0B 84 74 a7

52 1E D6 92 BC 34 94 56 F3 0C BE DA 67 7A DD 7D

Step 2. Form the value to be signed and hash with SHA1. The result

of the hash for this example is:

5f a2 69 b6 4b 22 91 22 6f 4c fe 68 ec 2b d1 c6

d4 21 e5 2c

Step 3. The hash value needs to be expanded since q = 256. This

is done by hashing the hash with SHA1 and appending it to the

original hash. The value after this step is:

5f a2 69 b6 4b 22 91 22 6f 4c fe 68 ec 2b d1 c6

d4 21 e5 2c 64 92 8b c9 5e 34 59 70 bd 62 40 ad

6f 26 3b f7 1c a3 b2 cb

Next the first 255 bits of this value are taken to be the resulting

"hash" value. Note in this case a shift of one bit right is done

since the result is to be treated as an integer:

2f d1 34 db 25 91 48 91 37 a6 7f 34 76 15 e8 e3

6a 10 f2 96 32 49 45 e4 af 1a 2c b8 5e b1 20 56

Step 4. The signature value is computed. In this case you get the

values

R:

A1 B5 B4 90 01 34 6B A0 31 6A 73 F5 7D F6 5C 14

43 52 D2 10 BF 86 58 87 F7 BC 6E 5A 77 FF C3 4B

S:

59 40 45 BC 6F 0D DC FF 9D 55 40 1E C4 9E 51 3D

66 EF B2 FF 06 40 9A 39 68 75 81 F7 EC 9E BE A1

The encoded signature values is then:

30 45 02 21 00 A1 B5 B4 90 01 34 6B A0 31 6A 73

F5 7D F6 5C 14 43 52 D2 10 BF 86 58 87 F7 BC 6E

5A 77 FF C3 4B 02 20 59 40 45 BC 6F 0D DC FF 9D

55 40 1E C4 9E 51 3D 66 EF B2 FF 06 40 9A 39 68

75 81 F7 EC 9E BE A1

Result:

30 82 02 c2 30 82 02 67 02 01 00 30 1b 31 19 30

17 06 03 55 04 03 13 10 49 45 54 46 20 50 4b 49

58 20 53 41 4d 50 4c 45 30 82 02 41 30 82 01 b6

06 07 2a 86 48 ce 3e 02 01 30 82 01 a9 02 81 81

00 94 84 e0 45 6c 7f 69 51 62 3e 56 80 7c 68 e7

c5 a9 9e 9e 74 74 94 ed 90 8c 1d c4 e1 4a 14 82

f5 d2 94 0c 19 e3 b9 10 bb 11 b9 e5 a5 fb 8e 21

51 63 02 86 aa 06 b8 21 36 b6 7f 36 df d1 d6 68

5b 79 7c 1d 5a 14 75 1f 6a 93 75 93 ce bb 97 72

8a f0 0f 23 9d 47 f6 d4 b3 c7 f0 f4 e6 f6 2b c2

32 e1 89 67 be 7e 06 ae f8 d0 01 6b 8b 2a f5 02

d7 b6 a8 63 94 83 b0 1b 31 7d 52 1a de e5 03 85

27 02 81 80 26 a6 32 2c 5a 2b d4 33 2b 5c dc 06

87 53 3f 90 06 61 50 38 3e d2 b9 7d 81 1c 12 10

c5 0c 53 d4 64 d1 8e 30 07 08 8c dd 3f 0a 2f 2c

d6 1b 7f 57 86 d0 da bb 6e 36 2a 18 e8 d3 bc 70

31 7a 48 b6 4e 18 6e dd 1f 22 06 eb 3f ea d4 41

69 d9 9b de 47 95 7a 72 91 d2 09 7f 49 5c 3b 03

33 51 c8 f1 39 9a ff 04 d5 6e 7e 94 3d 03 b8 f6

31 15 26 48 95 a8 5c de 47 88 b4 69 3a 00 a7 86

9e da d1 cd 02 21 00 e8 72 fa 96 f0 11 40 f5 f2

dc fd 3b 5d 78 94 b1 85 01 e5 69 37 21 f7 25 b9

ba 71 4a fc 60 30 fb 02 61 00 a3 91 01 c0 a8 6e

a4 4d a0 56 fc 6c fe 1f a7 b0 cd 0f 94 87 0c 25

be 97 76 8d eb e5 a4 09 5d ab 83 cd 80 0b 35 67

7f 0c 8e a7 31 98 32 85 39 40 9d 11 98 d8 de b8

7f 86 9b af 8d 67 3d b6 76 b4 61 2f 21 e1 4b 0e

68 ff 53 3e 87 dd d8 71 56 68 47 dc f7 20 63 4b

3c 5f 78 71 83 e6 70 9e e2 92 30 1a 03 15 00 1c

d5 3a 0d 17 82 6d 0a 81 75 81 46 10 8e 3e db 09

e4 98 34 02 01 37 03 81 84 00 02 81 80 5f cf 39

ad 62 cf 49 8e d1 ce 66 e2 b1 e6 a7 01 4d 05 c2

77 c8 92 52 42 a9 05 a4 db e0 46 79 50 a3 fc 99

3d 3d a6 9b a9 ad bc 62 1c 69 b7 11 a1 c0 2a f1

85 28 f7 68 fe d6 8f 31 56 22 4d 0a 11 6e 72 3a

02 af 0e 27 aa f9 ed ce 05 ef d8 59 92 c0 18 d7

69 6e bd 70 b6 21 d1 77 39 21 e1 af 7a 3a cf 20

0a b4 2c 69 5f cf 79 67 20 31 4d f2 c6 ed 23 bf

c4 bb 1e d1 71 40 2c 07 d6 f0 8f c5 1a a0 00 30

0c 06 08 2b 06 01 05 05 07 06 04 05 00 03 47 00

30 44 02 20 54 d9 43 8d 0f 9d 42 03 d6 09 aa a1

9a 3c 17 09 ae bd ee b3 d1 a0 00 db 7d 8c b8 e4

56 e6 57 7b 02 20 44 89 b1 04 f5 40 2b 5f e7 9c

f9 a4 97 50 0d ad c3 7a a4 2b b2 2d 5d 79 fb 38

8a b4 df bb 88 bc

Decoded Version of result:

0 30 707: SEQUENCE {

4 30 615: SEQUENCE {

8 02 1: INTEGER 0

11 30 27: SEQUENCE {

13 31 25: SET {

15 30 23: SEQUENCE {

17 06 3: OBJECT IDENTIFIER commonName (2 5 4 3)

22 13 16: PrintableString 'IETF PKIX SAMPLE'

: }

: }

: }

40 30 577: SEQUENCE {

44 30 438: SEQUENCE {

48 06 7: OBJECT IDENTIFIER dhPublicNumber (1 2 840 10046 2

1)

57 30 425: SEQUENCE {

61 02 129: INTEGER

: 00 94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7

: C5 A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82

: F5 D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21

: 51 63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68

: 5B 79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72

: 8A F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2

: 32 E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02

: D7 B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85

: 27

193 02 128: INTEGER

: 26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87 53 3F 90

: 06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5 0C 53 D4

: 64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6 1B 7F 57

: 86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31 7A 48 B6

: 4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69 D9 9B DE

: 47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33 51 C8 F1

: 39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31 15 26 48

: 95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E DA D1 CD

324 02 33: INTEGER

: 00 E8 72 FA 96 F0 11 40 F5 F2 DC FD 3B 5D 78 94

: B1 85 01 E5 69 37 21 F7 25 B9 BA 71 4A FC 60 30

: FB

359 02 97: INTEGER

: 00 A3 91 01 C0 A8 6E A4 4D A0 56 FC 6C FE 1F A7

: B0 CD 0F 94 87 0C 25 BE 97 76 8D EB E5 A4 09 5D

: AB 83 CD 80 0B 35 67 7F 0C 8E A7 31 98 32 85 39

: 40 9D 11 98 D8 DE B8 7F 86 9B AF 8D 67 3D B6 76

: B4 61 2F 21 E1 4B 0E 68 FF 53 3E 87 DD D8 71 56

: 68 47 DC F7 20 63 4B 3C 5F 78 71 83 E6 70 9E E2

: 92

458 30 26: SEQUENCE {

460 03 21: BIT STRING 0 unused bits

: 1C D5 3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E DB

: 09 E4 98 34

483 02 1: INTEGER 55

: }

: }

: }

486 03 132: BIT STRING 0 unused bits

: 02 81 80 5F CF 39 AD 62 CF 49 8E D1 CE 66 E2 B1

: E6 A7 01 4D 05 C2 77 C8 92 52 42 A9 05 A4 DB E0

: 46 79 50 A3 FC 99 3D 3D A6 9B A9 AD BC 62 1C 69

: B7 11 A1 C0 2A F1 85 28 F7 68 FE D6 8F 31 56 22

: 4D 0A 11 6E 72 3A 02 AF 0E 27 AA F9 ED CE 05 EF

: D8 59 92 C0 18 D7 69 6E BD 70 B6 21 D1 77 39 21

: E1 AF 7A 3A CF 20 0A B4 2C 69 5F CF 79 67 20 31

: 4D F2 C6 ED 23 BF C4 BB 1E D1 71 40 2C 07 D6 F0

: 8F C5 1A

: }

621 A0 0: [0]

: }

623 30 12: SEQUENCE {

625 06 8: OBJECT IDENTIFIER '1 3 6 1 5 5 7 6 4'

635 05 0: NULL

: }

637 03 72: BIT STRING 0 unused bits

: 30 45 02 21 00 A1 B5 B4 90 01 34 6B A0 31 6A 73

: F5 7D F6 5C 14 43 52 D2 10 BF 86 58 87 F7 BC 6E

: 5A 77 FF C3 4B 02 20 59 40 45 BC 6F 0D DC FF 9D

: 55 40 1E C4 9E 51 3D 66 EF B2 FF 06 40 9A 39 68

: 75 81 F7 EC 9E BE A1

: }

Full Copyright Statement

Copyright (C) The Internet Society (2000). All Rights Reserved.

This document and translations of it may be copied and furnished to

others, and derivative works that comment on or otherwise explain it

or assist in its implementation may be prepared, copied, published

and distributed, in whole or in part, without restriction of any

kind, provided that the above copyright notice and this paragraph are

included on all such copies and derivative works. However, this

document itself may not be modified in any way, such as by removing

the copyright notice or references to the Internet Society or other

Internet organizations, except as needed for the purpose of

developing Internet standards in which case the procedures for

copyrights defined in the Internet Standards process must be

followed, or as required to translate it into languages other than

English.

The limited permissions granted above are perpetual and will not be

revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an

"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING

TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING

BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

Funding for the RFCEditor function is currently provided by the

Internet Society.

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有