分享
 
 
 

Machine Learning(机器学习:局部和整体的学习)

Machine Learning(机器学习:局部和整体的学习)  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,计算机/网络,计算机理论,

作者: Kai-Zhu Huang, Hai-Qin Yang ,Irwin King , Michael Lyu著

出 版 社: 浙江大学出版社

出版时间: 2008-8-1字数:版次:页数: 169印刷时间: 2008/08/01开本: 16开印次:纸张: 胶版纸I S B N : 9787308058315包装: 精装内容简介

Machine Learning - Modeling Data Locally and Globally presents a novel and unified theory that tries to seamlessly integrate different algorithms。 Specifically, the book distinguishes the inner nature of machine learning algorithms as either “local learning”or “global learning。”This theory not only connects previous machine learning methods, or serves as roadmap in various models, but more importantly it also motivates a theory that can learn from data both locally and globally。 This would help the researchers gain a deeper insight and comprehensive understanding of the techniques in this field。 The book reviews current topics,new theories and applications。

Kaizhu Huang was a researcher at the Fujitsu Research and Development Center and is currently a research fellow in the Chinese University of Hong Kong。 Haiqin Yang leads the image processing group at HiSilicon Technologies。 Irwin King and Michael R。 Lyu are professors at the Computer Science and Engineering department of the Chinese University of Hong Kong。

目录

1 Introduction

1.1 Learning and Global Modeling

1.2 Learning and Local Modeling

1.3 Hybrid Learning

1.4 Major Contributions

1.5 Scope

1.6 Book 0rganization

References

2 Global Learning VS.Local Learning

2.1 Problem Definition

2.2 Global Learning

2.2.1 Generative Learning

2.2.2 Non—parametric Learning

2.2.3 The Minimum Error Minimax Probability Machine

2.3 Local Learning

2.4 Hybrid Learning

2.5 Maxi—Min Margin Machine

References

3 A General Global Learning Modeh MEMPM

3.1 Marshall and 0lkin Theory

3.2 Minimum Error Minimax Probability Decision Hyperplane

3.2.1 Problem Definition

3.2.2 Interpretation

3.2.3 Special Case for Biased Classifications

3.2.4 Solving the MEMPM Optimization Problem

3.2.5 When the Worst—case Bayes Optimal Hyperplane Becomes the True One

3.2.6 Geometrical InterDretation

3.3 Robust Version

3.4 Kernelization

3.4.1 Kernelization Theory for BMPM

3.4.2 Notations in Kernelization Theorem of BMPM

3.4.3 Kernelization Results

3.5 Experiments

3.5.1 Model Illustration on a Synthetic Dataset

3.5.2 Evaluations on Benchmark Datasets

3.5.3 Evaluations of BMPM on Heart.disease Dataset

3.6 HOW Tight Is the Bound

3.7 On the Concavity of MEMPM

3.8 Limitations and Future Work

3.9 Summary

ReferencesE

4 Learning Locally and Globally:Maxi-Min Margin Machine

4.1 Maxi—Min Margin Machine

4.1.1 Separable Case

4.1.2 Connections with Other Models

4.1.3 Nonseparable Case

4.1.4 Further Connection with Minimum Error Minimax Probability Machine

4.2 Bound on the Error Rate

4.3 Reduction

4.4 KernelizatiOn

4.4.1 Foundation of Kernelization for M4

4.4.2 Kernelization Result

4.5 Experiments

4.5.1 Evaluations on Three Synthetic Toy Datasets

4.5.2 Evaluations on Benchmark Datasets

4.6 Discussions and Future Work

4.7 Summary

References

5 ExtensionⅠ:BMPM for Imbalanced Learning

5.1 Introduction to Imbalanced Learning

5.2 Biased Minimax Probability Machine

5.3 Learning from Imbalanced Data by Using BMPM

5.3.1 Four Criteria to Evaluate Learning from Imbalanced Data

5.3.2 BMPM for Maximizing the Sum of the Accuracies

5.3.3 BMPM for ROC Analysis

6 ExtensionⅡ :A Regression Model from M4

7 ExtensionⅢ:Variational Margin Settings within Local Data

8 Conclusion and Future Work

References

Index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有