分享
 
 
 

Applied spatial statistics for public health data公共卫生数据应用空间分析

Applied spatial statistics for public health data公共卫生数据应用空间分析  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,进口原版书,医学 Medicine ,

作者: Lance A. Waller 著

出 版 社: 吉林长白山

出版时间: 2004-7-1字数:版次: 1页数: 494印刷时间: 2004/07/01开本: 16开印次: 1纸张: 胶版纸I S B N : 9780471387718包装: 精装内容简介

While mapped data provide a common ground for discussions between the public, the media, regulatory agencies, and public health researchers, the analysis of spatially referenced data has experienced a phenomenal growth over the last two decades, thanks in part to the development of geographical information systems (GISs). This is the first thorough overview to integrate spatial statistics with data management and the display capabilities of GIS. It describes methods for assessing the likelihood of observed patterns and quantifying the link between exposures and outcomes in spatially correlated data.

This introductory text is designed to serve as both an introduction for the novice and a reference for practitioners in the field

Requires only minimal background in public health and only some knowledge of statistics through multiple regression

Touches upon some advanced topics, such as random effects, hierarchical models and spatial point processes, but does not require prior exposure

Includes lavish use of figures/illustrations throughout the volume as well as analyses of several data sets (in the form of "data breaks")

Exercises based on data analyses reinforce concepts

作者简介

LANCE A. WALLER, PhD, is an associate professor in the Department of Biostatistics at Emory University in Atlanta, Georgia. He received his PhD in Operations Research in 1992 from Cornell University. Dr. Waller was named Student Government Professor of the Year in 2003 by the Rollins School of Public Health, Emory University, and is a Fellow of the American Statistical Association.

目录

Preface

Acknowledgments

1 Introduction

1.1 Why Spatial Data in Public Health?

1.2 Why Statistical Methods for Spatial Data?

1.3 Intersection of Three Fields of Study

1.4 Organization of the Book

2 Analyzing Public Health Data

2.1 Observational vsExperimental Data

2.2 Risk and Rates

2.2.1 Incidence and Prevalence

2.2.2 Risk

2.2.3 Estimating Risk: Rates and Proportions

2.2.4 Relative and Attributable Risks

2.3 Making Rates Comparable: Standardized Rates

2.3.1 Direct Standardization

2.3.2 Indirect Standardization

2.3.3 Direct or Indirect?

2.3.4 Standardizing to What Standard?

2.3.5 Cautions with Standardized Rates

2.4 Basic Epidemiological Study Designs

2.4.1 Prospective Cohort Studies

2.4.2 Retrospective Case–Control Studies

2.4.3 Other Types of Epidemiological Studies

2.5 Basic Analytic Tool: The Odds Ratio

2.6 Modeling Counts and Rates

2.6.1 Generalized Linear Models

2.6.2 Logistic Regression

2.6.3 Poisson Regression

2.7 Challenges in the Analysis of Observational Data

2.7.1 Bias

2.7.2 Confounding

2.7.3 Effect Modification

2.7.4 Ecological Inference and the Ecological Fallacy

2.8 Additional Topics and Further Reading

2.9 Exercises

3 Spatial Data

3.1 Components of Spatial Data

3.2 An Odyssey into Geodesy

3.2.1 Measuring Location: Geographical Coordinates

3.2.2 Flattening the Globe: Map Projections and Coordinate Systems

3.2.3 Mathematics of Location: Vector and Polygon Geometry

3.3 Sources of Spatial Data

3.3.1 Health Data

3.3.2 Census-Related Data

3.3.3 Geocoding

3.3.4 Digital Cartographic Data

3.3.5 Environmental and Natural Resource Data

3.3.6 Remotely Sensed Data

3.3.7 Digitizing

3.3.8 Collect Your Own!

3.4 Geographic Information Systems

3.4.1 Vector and Raster GISs

3.4.2 Basic GIS Operations

3.4.3 Spatial Analysis within GIS

3.5 Problems with Spatial Data and GIS

3.5.1 Inaccurate and Incomplete Databases

3.5.2 Confidentiality

3.5.3 Use of ZIP Codes

3.5.4 Geocoding Issues

3.5.5 Location Uncertainty

4 Visualizing Spatial Data

4.1 Cartography: The Art and Science of Mapmaking

4.2 Types of Statistical Maps

MAP STUDY: Very Low Birth Weights in Georgia Health Care District 9

4.2.1 Maps for Point Features

4.2.2 Maps for Areal Features

4.3 Symbolization

4.3.1 Map Generalization

4.3.2 Visual Variables

4.3.3 Color

4.4 Mapping Smoothed Rates and Probabilities

4.4.1 Locally Weighted Averages

4.4.2 Nonparametric Regression

4.4.3 Empirical Bayes Smoothing

4.4.4 Probability Mapping

4.4.5 Practical Notes and Recommendations

CASE STUDY: Smoothing New York Leukemia Data

4.5 Modifiable Areal Unit Problem

4.6 Additional Topics and Further Reading

4.6.1 Visualization

4.6.2 Additional Types of Maps

4.6.3 Exploratory Spatial Data Analysis

4.6.4 Other Smoothing Approaches

4.6.5 Edge Effects

4.7 Exercises

5 Analysis of Spatial Point Patterns

5.1 Types of Patterns

5.2 Spatial Point Processes

5.2.1 Stationarity and Isotropy

5.2.2 Spatial Poisson Processes and CSR

5.2.3 Hypothesis Tests of CSR via Monte Carlo Methods

5.2.4 Heterogeneous Poisson Processes

5.2.5 Estimating Intensity Functions

DATA BREAK: Early Medieval Grave Sites

5.3 K Function

5.3.1 Estimating the K Function

5.3.2 Diagnostic Plots Based on the K Function

5.3.3 Monte Carlo Assessments of CSR Based on the K Function

DATA BREAK: Early Medieval Grave Sites

5.3.4 Roles of First- and Second-Order Properties

5.4 Other Spatial Point Processes

5.4.1 Poisson Cluster Processes

5.4.2 Contagion/Inhibition Processes

5.4.3 Cox Processes

5.4.4 Distinguishing Processes

5.5 Additional Topics and Further Reading

5.6 Exercises

6 Spatial Clusters of Health Events: Point Data for Cases and Controls

6.1 What Do We Have? Data Types and Related Issues

6.2 What Do We Want? Null and Alternative Hypotheses

6.3 Categorization of Methods

6.4 Comparing Point Process Summaries

6.4.1 Goals

6.4.2 Assumptions and Typical Output

6.4.3 Method: Ratio of Kernel Intensity Estimates

DATA BREAK: Early Medieval Grave Sites

6.4.4 Method: Difference between K Functions

DATA BREAK: Early Medieval Grave Sites

6.5 Scanning Local Rates

6.5.1 Goals

6.5.2 Assumptions and Typical Output

6.5.3 Method: Geographical Analysis Machine

6.5.4 Method: Overlapping Local Case Proportions

DATA BREAK: Early Medieval Grave Sites

6.5.5 Method: Spatial Scan Statistics

DATA BREAK: Early Medieval Grave Sites

6.6 Nearest-Neighbor Statistics

6.6.1 Goals

6.6.2 Assumptions and Typical Output

6.6.3 Method: q Nearest Neighbors of Cases

CASE STUDY: San Diego Asthma

6.7 Further Reading

6.8 Exercises

7 Spatial Clustering of Health Events: Regional Count Data

7.1 What Do We Have and What Do We Want?

7.1.1 Data Structure

7.1.2 Null Hypotheses

7.1.3 Alternative Hypotheses

7.2 Categorization of Methods

7.3 Scanning Local Rates

7.3.1 Goals

7.3.2 Assumptions

7.3.3 Method: Overlapping Local Rates

DATA BREAK: New York Leukemia Data

7.3.4 Method: Turnbull et al.’s CEPP

7.3.5 Method: Besag and Newell Approach

7.3.6 Method: Spatial Scan Statistics

7.4 Global Indexes of Spatial Autocorrelation

7.4.1 Goals

7.4.2 Assumptions and Typical Output

7.4.3 Method: Moran’s I

7.4.4 Method: Geary’s c

7.5 Local Indicators of Spatial Association

7.5.1 Goals

7.5.2 Assumptions and Typical Output

7.5.3 Method: Local Moran’s I

7.6 Goodness-of-Fit Statistics

7.6.1 Goals

7.6.2 Assumptions and Typical Output

7.6.3 Method: Pearson’s χ2

7.6.4 Method: Tango’s Index

7.6.5 Method: Focused Score Tests of Trend

7.7 Statistical Power and Related Considerations

7.7.1 Power Depends on the Alternative Hypothesis

7.7.2 Power Depends on the Data Structure

7.7.3 Theoretical Assessment of Power

7.7.4 Monte Carlo Assessment of Power

7.7.5 Benchmark Data and Conditional Power Assessments

7.8 Additional Topics and Further Reading

7.8.1 Related Research Regarding Indexes of Spatial Association

7.8.2 Additional Approaches for Detecting Clusters and/or Clustering

7.8.3 Space–Time Clustering and Disease Surveillance

7.9 Exercises

8 Spatial Exposure Data

8.1 Random Fields and Stationarity

8.2 Semivariograms

8.2.1 Relationship to Covariance Function and Correlogram

8.2.2 Parametric Isotropic Semivariogram Models

8.2.3 Estimating the Semivariogram

DATA BREAK: Smoky Mountain pH Data

8.2.4 Fitting Semivariogram Models

8.2.5 Anisotropic Semivariogram Modeling

8.3 Interpolation and Spatial Prediction

8.3.1 Inverse-Distance Interpolation

8.3.2 Kriging

CASE STUDY: Hazardous Waste Site Remediation

8.4 Additional Topics and Further Reading

8.4.1 Erratic Experimental Semivariograms

8.4.2 Sampling Distribution of the Classical Semivariogram Estimator

8.4.3 Nonparametric Semivariogram Models

8.4.4 Kriging Non-Gaussian Data

8.4.5 Geostatistical Simulation

8.4.6 Use of Non-Euclidean Distances in Geostatistics

8.4.7 Spatial Sampling and Network Design

8.5 Exercises

9 Linking Spatial Exposure Data to Health Events

9.1 Linear Regression Models for Independent Data

9.1.1 Estimation and Inference

9.1.2 Interpretation and Use with Spatial Data

DATA BREAK: Raccoon Rabies in Connecticut

9.2 Linear Regression Models for Spatially Autocorrelated Data

9.2.1 Estimation and Inference

9.2.2 Interpretation and Use with Spatial Data

9.2.3 Predicting New Observations: Universal Kriging

DATA BREAK: New York Leukemia Data

9.3 Spatial Autoregressive Models

9.3.1 Simultaneous Autoregressive Models

9.3.2 Conditional Autoregressive Models

9.3.3 Concluding Remarks on Conditional Autoregressions

9.3.4 Concluding Remarks on Spatial Autoregressions

9.4 Generalized Linear Models

9.4.1 Fixed Effects and the Marginal Specification

9.4.2 Mixed Models and Conditional Specification

9.4.3 Estimation in Spatial GLMs and GLMMs

DATA BREAK: Modeling Lip Cancer Morbidity in Scotland

9.4.4 Additional Considerations in Spatial GLMs

CASE STUDY: Very Low Birth Weights in Georgia Health Care District 9

9.5 Bayesian Models for Disease Mapping

9.5.1 Hierarchical Structure

9.5.2 Estimation and Inference

9.5.3 Interpretation and Use with Spatial Data

9.6 Parting Thoughts

9.7 Additional Topics and Further Reading

9.7.1 General References

9.7.2 Restricted Maximum Likelihood Estimation

9.7.3 Residual Analysis with Spatially Correlated Error Terms

9.7.4 Two-Parameter Autoregressive Models

9.7.5 Non-Gaussian Spatial Autoregressive Models

9.7.6 Classical/Bayesian GLMMs

9.7.7 Prediction with GLMs

9.7.8 Bayesian Hierarchical Models for Spatial Data

9.8 Exercises

References

Author Index

Subject Index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
>>返回首頁<<
 
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有