分享
 
 
 

All-Digital Frequency Synthesizer in Deep-Submicron CMOS深亚微米CMOS全数字频率合成器

All-Digital Frequency Synthesizer in Deep-Submicron CMOS深亚微米CMOS全数字频率合成器  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,进口原版书,科学与技术 Science & Techology ,

作者: Robert B. Staszewski 著

出 版 社: 吉林长白山

出版时间: 2006-9-1字数:版次: 1页数: 261印刷时间: 2006/09/01开本: 16开印次: 1纸张: 胶版纸I S B N : 9780471772552包装: 精装内容简介

Learn the techniques for designing and implementing an all-digital RF frequency synthesizer. In contrast to traditional RF techniques, this innovative book sets forth digitally intensive design techniques that lead the way to the development of low-cost, low-power, and highly integrated circuits for RF functions in deep submicron CMOS processes. Furthermore, the authors demonstrate how the architecture enables readers to integrate an RF front-end with the digital back-end onto a single silicon die using standard ASIC design flow.

Taking a bottom-up approach that progressively builds skills and knowledge, the book begins with an introduction to basic concepts of frequency synthesis and then guides the reader through an all-digital RF frequency synthesizer design:

Chapter 2 presents a digitally controlled oscillator (DCO), which is the foundation of a novel architecture, and introduces a time-domain model used for analysis and VHDL simulation

Chapter 3 adds a hierarchical layer of arithmetic abstraction to the DCO that makes it easier to operate algorithmically

Chapter 4 builds a phase correction mechanism around the DCO such that the system's frequency drift or wander performance matches that of the stable external frequency reference

Chapter 5 presents an application of the all-digital RF synthesizer

Chapter 6 describes the behavioral modeling and simulation methodology used in design

The final chapter presents the implementation of a full transmitter and experimental results. The novel ideas presented here have been implemented and proven in two high-volume, commercial single-chip radios developed at Texas Instruments: Bluetooth and GSM.

While the focus of the book is on RF frequency synthesizer design, the techniques can be applied to the design of other digitally assisted analog circuits as well. This book is a must-read for students and engineers who want to learn a new paradigm for RF frequency synthesis and wireless transmitter design using digitally intensive design techniques.

作者简介

ROBERT BOGDAN STASZEWSKI, PhD, is a Distinguished Member of Technical Staff with the Digital RF Processor Group of Texas Instruments, where he co-invented and developed the Digital RF Processor (DRPTM), a novel, all-digital transmitter and digitally intensive direct-sampling receiver architecture. Before joining Texas Instruments, Dr. Staszewski worked with Alcatel Network Systems as a design engineer.

目录

PREFACE

1 INTRODUCTION

1.1 Frequency Synthesis

1.1.1 Noise in Oscillators

1.1.2 Frequency Synthesis Techniques

1.2 Frequency Synthesizer as an Integral Part of an RF Transceiver

1.2.1 Transmitter

1.2.2 Receiver

1.2.3 Toward Direct Transmitter Modulation

1.3 Frequency Synthesizers for Mobile Communications

1.3.1 Integer-N PLL Architecture

1.3.2 Fractional-N PLL Architecture

1.3.3 Toward an All-Digital PLL Approach

1.4 Implementation of an RF Synthesizer

1.4.1 CMOS vsTraditional RF Process Technologies

1.4.2 Deep-Submicron CMOS

1.4.3 Digitally Intensive Approach

1.4.4 System Integration

1.4.5 System Integration Challenges for Deep-Submicron CMOS

2 DIGITALLY CONTROLLED OSCILLATOR

2.1 Varactor in a Deep-Submicron CMOS Process

2.2 Fully Digital Control of Oscillating Frequency

2.3 LC Tank

2.4 Oscillator Core

2.5 Open-Loop Narrowband Digital-to-Frequency Conversion

2.6 Example Implementation

2.7 Time-Domain Mathematical Model of a DCO

2.8 Summary

3 NORMALIZED DCO

3.1 Oscillator Transfer Function and Gain

3.2 DCO Gain Estimation

3.3 DCO Gain Normalization

3.4 Principle of Synchronously Optimal DCO Tuning Word Retiming

3.5 Time Dithering of DCO Tuning Input

3.5.1 Oscillator Tune Time Dithering Principle

3.5.2 Direct Time Dithering of Tuning Input

3.5.3 Update Clock Dithering Scheme

3.6 Implementation of PVT and Acquisition DCO Bits

3.7 Implementation of Tracking DCO Bits

3.7.1 High-Speed Dithering of Fractional Varactors

3.7.2 Dynamic Element Matching of Varactors

3.7.3 DCO Varactor Rearrangement

3.8 Time-Domain Model

3.9 Summary

4 ALL-DIGITAL PHASE-LOCKED LOOP

4.1 Phase-Domain Operation

4.2 Reference Clock Retiming

4.3 Phase Detection

4.3.1 Difference Mode of ADPLL Operation

4.3.2 Integer-Domain Operation

4.4 Modulo Arithmetic of the Reference and Variable Phases

4.4.1 Variable-Phase Accumulator (PV Block)

4.5 Time-to-Digital Converter

4.5.1 Frequency Reference Edge Estimation

4.6 Fractional Error Estimator

4.6.1 Fractional-Division Ratio Compensation

4.6.2 TDC Resolution Effect on Estimated Frequency Resolution

4.6.3 Active Removal of Fractional Spurs Through TDC (Optional)

4.7 Frequency Reference Retiming by a DCO Clock

4.7.1 Sense Amplifier–Based Flip-Flop

4.7.2 General Idea of Clock Retiming

4.7.3 Implementation

4.7.4 Time-Deferred Calculation of the Variable Phase (Optional)

4.8 Loop Gain Factor

4.8.1 Phase-Error Dynamic Range

4.9 Phase-Domain ADPLL Architecture

4.9.1 Close-in Spurs Due to Injection Pulling

4.10 PLL Frequency Response

4.10.1 Conversion Between the s- and z-Domains

4.11 Noise and Error Sources

4.11.1 TDC Resolution Effect on Phase Noise

4.11.2 Phase Noise Due to DCO SD Dithering

4.12 Type II ADPLL

4.12.1 PLL Frequency Response of a Type II Loop

4.13 Higher-Order ADPLL

4.13.1 PLL Stability Analysis

4.14 Nonlinear Differential Term of an ADPLL

4.14.1 Quality Monitoring of an RF Clock

4.15 DCO Gain Estimation Using a PLL

4.16 Gear Shifting of PLL Gain

4.16.1 Autonomous Gear-Shifting Mechanism

4.16.2 Extended Gear-Shifting Scheme with Zero-Phase Restart

4.17 Edge Skipping Dithering Scheme (Optional)

4.18 Summary

5 APPLICATION: ADPLL-BASED TRANSMITTER

5.1 Direct Frequency Modulation of a DCO

5.1.1 Discrete-Time Frequency Modulation

5.1.2 Hybrid of Predictive/Closed PLL Operation

5.1.3 Effect of FREF/CKR Clock Misalignment

5.2 Just-in-Time DCO Gain Calculation

5.3 GFSK Pulse Shaping of Transmitter Data

5.3.1 Interpolative Filter Operation

5.4 Power Amplifier

5.5 Digital Amplitude Modulation

5.5.1 Discrete Pulse-Slimming Control

5.5.2 Regulation of Transmitting Power

5.5.3 Tuning Word Adjustment

5.5.4 Fully Digital Amplitude Control

5.6 Going Forward: Polar Transmitter

5.6.1 Generic Modulator

5.6.2 Polar TX Realization

5.7 Summary

6 BEHAVIORAL MODELING AND SIMULATION

6.1 Simulation Methodology

6.2 Digital Blocks

6.3 Support of Digital Stream Processing

6.4 Random Number Generator

6.5 Time-Domain Modeling of DCO Phase Noise

6.5.1 Modeling Oscillator Jitter

6.5.2 Modeling Oscillator Wander

6.5.3 Modeling Oscillator Flicker (1/f ) Noise

6.5.4 Clock Edge Divider Effects

6.5.5 VHDL Model Realization of a DCO

6.5.6 Support of Physical KDCO

6.6 Modeling Metastability in Flip-Flops

6.7 Simulation Results

6.7.1 Time-Domain Simulations

6.7.2 Frequency-Deviation Simulations

6.7.3 Phase-Domain Simulations of Transmitters

6.7.4 Synthesizer Phase-Noise Simulations

6.8 Summary

7 IMPLEMENTATION AND EXPERIMENTAL RESULTS

7.1 DSP and Its RF Interface to DRP

7.2 Transmitter Core Implementation

7.3 IC Chip

7.4 Evaluation Board

7.5 Measurement Equipment

7.6 GFSK Transmitter Performance

7.7 Synthesizer Performance

7.8 Synthesizer Switching Transients

7.9 DSP-Driven Modulation

7.10 Performance Summary

7.11 Summary

APPENDIX A: SPURS DUE TO DCO SWITCHING

A.1 Spurs Due to DCO Modulation

APPENDIX B: GAUSSIAN PULSE-SHAPING FILTER

APPENDIX C: VHDL SOURCE CODE

C.1 DCO Level 2

C.2 Period-Controlled Oscillator

C.3 Tactical Flip-Flop

C.4 TDC Pseudo-Thermometer Output Decoder

REFERENCES

INDEX

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
>>返回首頁<<
 
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有