分享
 
 
 

Real Analysis: A Constructive Approach (Pure and Applied Mathematics: A Wiley-Interscience Series of实分析:建设性研究

Real Analysis: A Constructive Approach (Pure and Applied Mathematics: A Wiley-Interscience Series of实分析:建设性研究  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,进口原版书,科学与技术 Science & Techology ,

作者: Mark Bridger 著

出 版 社: 吉林长白山

出版时间: 2006-11-1字数:版次: 1页数: 302印刷时间: 2006/11/01开本: 16开印次: 1纸张: 胶版纸I S B N : 9780471792307包装: 精装内容简介

This innovative text sets forth a thoroughly rigorous modern account of the theoretical underpinnings of calculus: continuity, differentiability, and convergence. Using a constructive approach, every proof of every result is direct and ultimately computationally verifiable. The ultimate consequence of this method is that it makes sense—whether you’re a math major or student in any branch of the sciences.

This innovative text sets forth a thoroughly rigorous modern account of the theoretical underpinnings of calculus: continuity, differentiability, and convergence. Using a constructive approach, every proof of every result is direct and ultimately computationally verifiable. In particular, existence is never established by showing that the assumption of non-existence leads to a contradiction. The ultimate consequence of this method is that it makes sense—not just to math majors but also to students from all branches of the sciences.

The text begins with a construction of the real numbers beginning with the rationals, using interval arithmetic. This introduces readers to the reasoning and proof-writing skills necessary for doing and communicating mathematics, and it sets the foundation for the rest of the text, which includes:

Early use of the Completeness Theorem to prove a helpful Inverse Function Theorem

Sequences, limits and series, and the careful derivation of formulas and estimates for important functions

Emphasis on uniform continuity and its consequences, such as boundedness and the extension of uniformly continuous functions from dense subsets

Construction of the Riemann integral for functions uniformly continuous on an interval, and its extension to improper integrals

Differentiation, emphasizing the derivative as a function rather than a pointwise limit

Properties of sequences and series of continuous and differentiable functions

Fourier series and an introduction to more advanced ideas in functional analysis

Examples throughout the text demonstrate the application of new concepts. Readers can test their own skills with problems and projects ranging in difficulty from basic to challenging.

This book is designed mainly for an undergraduate course, and the author understands that many readers will not go on to more advanced pure mathematics. He therefore emphasizes an approach to mathematical analysis that can be applied across a range of subjects in engineering and the sciences.

作者简介:

MARK BRIDGER, PHD, is Associate Professor of Mathematics at Northeastern University in Boston, Massachusetts. The author of numerous journal articles, Dr. Bridger's research focuses on constructive analysis, the philosophy of science, and the use of technology in mathematics education.

目录

Preface

Acknowledgements

Introduction

0 Preliminaries

0.1 The Natural Numbers

0.2 The Rationals

1 The Real Numbers and Completeness

1.0 Introduction

1.1 Interval Arithmetic

1.2 Families of Intersecting Intervals

1.3 Fine Families

1.4 Definition of the Reals

1.5 Real Number Arithmetic

1.6 Rational Approximations

1.7 Real Intervals and Completeness

1.8 Limits and Limiting Families

Appendix: The Goldbach Number and Trichotomy

2 An Inverse Function Theorem and its Application

2.0 Introduction

2.1 Functions and Inverses

2.2 An Inverse Function Theorem

2.3 The Exponential Function

2.4 Natural Logs and the Euler Number

3 LimitsSequences and Series

3.1 Sequences and Convergence

3.2 Limits of Functions

3.3 Series of Numbers

Appendix I: Some Properties of Exp and Log

Appendix 11: Rearrangements of Series

4 Uniform Continuity

4.1 Definitions and Elementary Properties

4.2 Limits and Extensions

Appendix I: Are there Non-Continuous Functions?

Appendix XI: Continuity of Double-Sided Inverses

Appendix III: The Goldbach Function

5 The Riemann Integral

5.1 Definition and Existence

5.2 Elementary Properties

5.3 Extensions and Improper Integrals

6 Differentiation

6.1 Definitions and Basic Properties

6.2 The Arithmetic of Differentiability

6.3 Two Important Theorems

6.4 Derivative Tools

6.5 Integral Tools

7 Sequences and Series of Functions

7.1 Sequences of Functions

7.2 Integrals and Derivatives of Sequences

7.3 Power Series

7.4 Taylor Series

7.5 The Periodic Functions

Appendix: Binomial Issues

8 The Complex Numbers and Fourier Series

8.0 Introduction

8.1 The Complex Numbers C

8.2 Complex Functions and Vectors

8.3 Fourier Series Theory

References

Index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
>>返回首頁<<
 
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有