分享
 
 
 

偏微分方程导论Introduction to partial differential equations : a computational approach

偏微分方程导论Introduction to partial differential equations : a computational approach  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,进口原版书,科学与技术 Science & Techology ,

作者: Aslak Tveito,Ragnar Winther著

出 版 社: Oversea Publishing House

出版时间: 2004-11-1字数:版次: 1页数: 392印刷时间: 2004/11/01开本: 16开印次: 1纸张: 胶版纸I S B N : 9783540225515包装: 精装内容简介

This book teaches the basic methods of partial differential equations and introduces related important ideas associated with the analysis of numerical methods for those partial differential equations。 Standard topics such as separation of variables, Fourier analysis, maximum principles, and energy estimates are included。 Numerical methods are introduced in parallel to the classical theory。 The numerical experiments are used to illustrate properties of differential equations and theory for finite difference approximations is developed。 Numerical methods are included in the book to show the significance of computations in partial differential equations and to illustrate the strong interaction between mathematical theory and the development of numerical methods。 Great care has been taken throughout the book to seek a sound balance between the analytical and numerical techniques。 The authors present the material at an easy pace with well-organized exercises ranging from the straightforward to the challenging。 In addition, special projects are included, containing step by step hints and instructions, to help guide students in the correct way of approaching partial differential equations。 The text would be suitable for advanced undergraduate and graduate courses in mathematics and engineering。 Necessary prerequisites for this text are basic calculus and linear algebra。 Some elementary knowledge of ordinary differential equations is also preferable。

目录

1Setting the Scene

1.1 What Is a Differential Equation?

1.1.1 Concepts

1.2 The Solution and Its Properties

1.2.1 An Ordinary Differential Equation

1.3 A Numerical Method

1.4 Cauchy Problems

1.4.1 First Order Homogeneous Equations

1.4.2 First Order Nonhomogeneous Equations

1.4.3 The Wave Equation

1.4.4 The Heat Equation

1.5 Exercises

1.6 Projects

2 TWO-Point Boundary Value Problems

2.1 Poisson’S Equation in OBe Dimension

2.1.1 Green’S Function

2.1.2 Smoothness of the Solution

2.1.3 A Maximum Principle

2.2 A Finite Difference Approximation

2.2.1 Taylor Series

2.2.2 A System of Algebraic Equations.

2.2.3 Gaussian Elimination for Tridiagonal Linear Systems

2.2.4 Diagonal Dominant Matrices

2.2.5 Positive Definite Matrices

2.3 Continuous and Discrete Solutions

2.3.1 Difference and Differential Equations.

2.3.2 Symmetry

2.3.3 Uniqueness

2.3.4 A Maximum Principle for the Discrete Problem.

2.3.5 Convergence of the Discrete Solutions

2.4 Eigenvalue Problems

2.4.1 The COntinuous Eigenvalue Problem

2.4.2 The Discrete Eigenvalue Problem

2.5 Exercises

2.6 Projects

3 The Heat Equation

3.1 A Brief Overview

3.2 Separation of Variables

3.3 The Principle of Superposition

3.4 F0urier Coefficients

3.5 Other Boundary Conditions

3.6 The Neumann Problem

3.6.1 The Eigenvalue Problem

3.6.2 Particular Solutions

3.6.3 A F0rmal Solution

3.7 Energy Arguments

3.8 Differentiation of Integrals

3.9 Exercises

3.10 Projects

4 Finite Difference Schemes for the Heat Equation

4.1 An Explicit Scheme

4.2 F0urier Analysis of the Numerical Solution

4.2.1 Particular Solutions

4.2.2 Comparison of the Analytical and Discrete Solution

4.2.3 Stability Considerations

4.2.4 The Accuracy oftim Approximation

4.2.5 Summary of the Comparison

4.3 Von Neumann’S Stability Analysis

4.3.1 Particular Solutions:Continuous and Discrete

4.3.2 Examples

4.3.3 A Nonlinear Problem

4.4 An Implicit Scheme

4.4.1 Stability Anysis

4.5 Numerical Stability by Energy Arguments

4.6 Exercises

5 The Wave Equation

6 Maximum Principles

7 Poisson’s Equation in Two Space Dimensions

8 Orthogonality and General Fourier Series

9 Convergence of Fourier Series

10 The Heat Equation Revisited

11 Reaction-Diffusion Equations

12 Application of the Fourier Transform

References

Index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
>>返回首頁<<
 
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有