燃油可以在各油箱内转移,用于控制飞机重心和升力中心的相对位置,减少用气动控制面配平的必要
协和式前所未有的速度使设计遇到了前所未有的问题。超音速飞机的机翼升力中心随速度的上升而后移。由于飞机的重心没有变,升力中心的后移导致飞机产生下俯力矩,必须压尾(常规或者无尾布局)或者抬头(鸭式布局)才能补偿,才能维持水平飞行。这个动作称为配平。传统上,配平由平尾的偏转来实现,但这要引起阻力,这就是所谓的配平阻力。协和式在设计上采用
S
前缘的大三角翼,在产生升力较少的翼根处采用很大的后掠角,以降低阻力;在主要产生升力的机翼外段采用较小的后掠角和较小的机翼弦长,相对约束了升力中心的后移。圆浑的翼尖则逐渐减小升力,减少翼尖失速的问题,维持有效翼展。但
S 前缘三角翼不能完全消除配平问题,剩下的就通过将燃油在机内前后油箱之间转移,自动控制重心来达到配平,这样可以减少使用控制面,降低配平阻力。
翼下的四台罗尔斯罗伊斯“奥林普斯”是当年推力最大的喷气发动机。更加省油和安静的涡扇发动机迎风面积较大,阻力太大,不适合超音速客机的使用,所以“奥林普斯”采用涡喷。发动机推力按照巡航要求最优化,起飞加速和冲过音障需要最大推力时用加力解决。实际上,非加力推力也勉强足够协和式达到超音速,但在跨音速阶段加速的时间加长,最后的累计耗油率反而高。“奥林普斯”是西方民航飞机上使用的唯一的加力发动机。为了进一步优化发动机的工况,进气口采用大型斜板调节激波的位置,并对进气预压缩,使发动机从亚音速到超音速都能处在最优的进气状态。
